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Abstract
An optimal control problem when modeling the recti-

fication process in the column is considered. The pro-
cess is described by a system of first-order hyperbolic
equations with dynamic boundary conditions. A spe-
cific peculiarity of the model under consideration is in
the boundary conditions of a special type. At each of the
boundaries, boundary conditions are determined from a
system of ordinary differential equations, which also in-
cludes unknown values of functions on another bound-
ary. Three variants of numerical methods for solving the
considered problem are proposed. The first method is
based on a linearized maximum principle. Structurally it
coincides with a conditional gradient method in a corre-
sponding functional space. The second method is a mod-
ification of a two-parameter maximum principle method.
This method makes it possible to work effectively with
internal admissible controls in contrast to standard iter-
ative maximum principle methods. The third method is
based on the procedure of discretization of the problem
and the use of the standard SciPy Python library to solve
the corresponding mathematical programming problem.
The results of numerical experiments are illustrated by a
series of tables and graphs. As a result, the conditional
gradient method may be recommended for solving the
problem under consideration.
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1 Introduction
The paper considers an optimal control problem when

modeling the rectification process in the column. The

process is described by a system of first-order hyperbolic
equations with dynamic boundary conditions.

Cascade systems of hyperbolic and ordinary differ-
ential equations are used when modeling a number of
processes of chemical rectification [Demidenko, 2006a;
Demidenko, 2006b; Gushchin, 2020], blood flow dy-
namics [Ruan, 2008], nanoparticles [Wang, 2022], etc.

This paper does not aim to analyze existing meth-
ods for solving problems of optimal control of systems
with distributed parameters. We note the large num-
ber of reviews in this area, from the first works (see,
e.g., [Butkovsky, 1968]) to modern books (see, e.g.,
[Fursikov, 2000]). Note that most methods for solving
optimization problems in distributed parameter systems
are based on the use of necessary optimality conditions
(Pontryagin’s maximum principle, gradient conditions),
their generalizations (conditions of higher orders), suf-
ficient optimality conditions (Hamilton-Jacobi methods,
Krotov conditions), and discretizations of problems in
one or another form.

A specific peculiarity of the model under considera-
tion is in the boundary conditions of a special type. At
each of the boundaries, boundary conditions are deter-
mined from a system of ordinary differential equations,
which also includes unknown values of functions on an-
other boundary. In [Arguchintsev, 2023] a modification
of the numerical method of characteristics is proposed to
solve this initial-boundary value problem. The method
is based on constructing a characteristic difference grid
obtained by linear transforming a classical rectangular
grid.

In this paper, an optimal control problem with a
quadratic cost functional is considered. It is important
that a classic Pontryagin’s maximum principle in the
problem is not a sufficient optimality condition.

Three variants of numerical methods for solving the
considered problem are proposed.
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The first method is based on a linearized maximum
principle. Structurally, it coincides with a conditional
gradient method in a corresponding functional space.

The second method is a modification of a two-
parameter maximum principle method [Vasiliev, 1990].
Using one-parameter maximum principle methods of
Krylov-Chernous’ko type [Krylov, 1972; Vasiliev, 1990;
Vasiliev, 1981] in the problem does not make sense. Due
to the linearity of systems of hyperbolic and ordinary dif-
ferential equations, Pontryagin function linearly depends
on control functions in most problems of the considered
type. Thus, these methods will search only for boundary
values of admissible controls. Theoretically, the method
is stronger than a conditional gradient method. The pro-
posed method allows to work effectively with internal
admissible controls in contrast to standard iterative max-
imum principle methods.

The third method is based on the procedure of dis-
cretization of the problem and the use of the standard
SciPy Python library to solve the corresponding mathe-
matical programming problem. The solver implements a
modification of the quasi-Newton method BFGS (Broy-
den – Fletcher –Goldfarb – Shanno algorithm) [Nocedal,
2006]. The “minimize” function of the “Optimize” mod-
ule of the SciPy library was used.

The results of numerical experiments are illustrated by
a series of tables and graphs. Finally, the conditional
gradient method may be recommended for solving the
problem under consideration. It is possible that this is
due to the linearity of hyperbolic and ordinary differen-
tial equations.

2 Problem statement
The mathematical model of two-component mixture

separation is described by the following first-order sys-
tem of hyperbolic equations with dynamic boundary
conditions [Demidenko, 2006a]:

∂x

∂t
− c1

∂x

∂s
= B11(s, t)x+B12(s, t)y+F1(s, t), (1)

∂y

∂t
+ c2

∂y

∂s
= B21(s, t)x+B22(s, t)y + F2(s, t), (2)

∂x(s1, t)

∂t
= G1(u(t), t)(y(s1, t)− x(s1, t)), (3)

∂y(s0, t)

∂t
= G2(v(t), t)(x(s0, t)− y(s0, t)), (4)

x(s, t0) = x0(s), y(s, t0) = y0(s), (5)

Here t is a time variable, t ∈ T = [t0, t1]; s is a spa-
tial variable, s ∈ S = [s0, s1]; (s, t) ∈ Π = S × T ;
x(s, t) and y(s, t) are component concentrations in liq-
uid and steam phases; positive constants c1, c2 and func-
tions B11(s, t), B12(s, t), B21(s, t), B22(s, t), F1(s, t),
F2(s, t), x0(s), y0(s) are given.

The incoming mixture is subjected to evaporation
and condensation procedures. The boundary conditions
(3) and (4) are obtained from the corresponding mate-
rial balance equations [Arguchintsev, 2023; Demidenko,
2006a]. Control functions u(t) and v(t) specify the
shares of the final product extracted at the bottom (s =
s0) and at the top (s = s1) of the distillation column.
The admissible controls are assumed to be bounded and
measurable scalar functions. They are determined on the
interval T and satisfy, almost everywhere, inclusion-type
constraints

u(t) ∈ U = [u, u], v(t) ∈ V = [v, v], t ∈ T. (6)

The goal of the optimal control problem is to minimize
the functional at the final time moment t1.

J(u, v) =

∫
S

[(x(s, t1)−x(s))2+(y(s, t1)−y(s))2]ds,
(7)

where x(s) and y(s) are given functions.
So, the optimal control problem (1) – (7) is the problem

of minimizing the finite state norm.
The physical meaning of this functional is to control

the system so that it arrives at a given state at the final
time t1. The problem (1) – (7) can also be interpreted
as an inverse problem of mathematical physics. Based
on the known observational data x, y at a finite moment
of time t1, it is required to recover the parameters of the
right-hand sides of boundary conditions (3) and (4).

The problem (1) – (7) is considered under the follow-
ing assumptions.

1) Functions B11(s, t), B12(s, t), B21(s, t), B22(s, t),
F1(s, t), F2(s, t) are continuous in Π.

2) Functions G1(u, t), G2(v, t) are continuous in ag-
gregate of its arguments on U × T , V × T respectively.

3) Admissible controls u, v ∈ L∞(T ).
For any admissible controls, there is a unique general-

ized solution of the initial-boundary value problem (1) –
(5), which is continuous in Π function [Godunov, 1979].
Components x, y of the solution are continuously dif-
ferentiable along the characteristics s = −c1t + const
and s = c2t + const respectively. The continuity of the
solution is guaranteed by above assumptions on the pa-
rameters of the problem. These conditions do not guar-
antee existence of a classical solution in the rectangle
Π. This requires the fulfillment of higher-order match-
ing conditions closely related to the hyperbolic system
itself [Godunov, 1979].
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3 Necessary optimality conditions
In [Arguchintsev, 2009] a necessary optimality condi-

tion for the problem (1) – (7) was proved in contrast for
smooth admissible controls. An estimate of a state in-
crement that depends on a measure of the control vari-
ation region was obtained. Application of the general
technique of proving necessary optimality conditions to-
gether with this estimation makes it possible to derive in
(1) – (7) a necessary optimality condition of the classical
maximum principle type.

Consider the following constructions. Let’s introduce
a conjugate problem in Π

∂ψ1

∂t
− c1

∂ψ1

∂s
= −B11ψ1 −B21ψ2,

∂ψ2

∂t
+ c2

∂ψ2

∂s
= −B12ψ1 −B22ψ2;

ψ1(s, t1) = −2(x(s, t1)− x(s)),

ψ2(s, t1) = −2(y(s, t1)− y(s)), s ∈ S;

ψ1(s0, t) =
1

c1
G2(v(t), t)p2(t),

ψ2(s1, t) =
1

c2
G1(u(t), t)p1(t), t ∈ T,

(8)

and an initial value problem in T

dp1
dt

= G1(u(t), t)p1(t)− c1ψ1(s1, t),

dp2
dt

= G2(v(t), t)p2(t)− c2ψ2(s0, t), t ∈ T ;

p1(t1) = 0, p2(t1) = 0.

(9)

Let’s denote

h(p, x, y, u, v, t) = p1G1(u(t), t)[y(s1, t)− x(s1, t)]+

+p2G2(v(t), t)[x(s0, t)− y(s0, t)].

Then the necessary optimality conditions can be for-
mulated in the following forms (classical and linearized
maximum principles).

Theorem. Let admissible bounded and mea-
surable controls (u∗(t), v∗(t)) be optimal in (1) –
(7); (x∗(s, t), y∗(s, t)) be solutions of the initial-
boundary value problem (1) – (5) for controls (u∗, v∗);
(p∗1(t), p

∗
2(t)) be solutions of the initial-boundary value

problems (8) – (9) for (u∗, v∗) and (x∗, y∗).
Then almost everywhere on T the following conditions

are satisfied.

h(p∗, x∗, y∗, u∗, v∗, t) = max
(u,v)∈U×V

h(p∗, x∗, y∗, u, v, t)

(10)
and

∂h(p∗, x∗, y∗, u∗, v∗, t)

∂u
u∗(t)+

+
∂h(p∗, x∗, y∗, u∗, v∗, t)

∂v
v∗(t) =

= max
(u,v)∈U×V

[
∂h(p∗, x∗, y∗, u∗, v∗, t)

∂u
u(t)+

+
∂h(p∗, x∗, y∗, u∗, v∗, t)

∂v
v(t)].

(11)

Note that the pointwise maximum principle (10) in this
problem is not a sufficient optimality condition despite
the linearity of the differential equations (1) – (4) and
convexity of the cost functional (7). This is due to the
presence in (3), (4) the bilinear summands of the form
G1(u(t), t)(y(s1, t) − x(s1, t)), G2(v(t), t)(x(s0, t) −
y(s0, t)).

The conditions (10), (11) are the theoretical basis for
construction of numerical methods.

4 Numerical methods
To illustrate the methods of numerical solution of the

problem, all calculations have been carried out for con-
trol function v(t) only.

4.1 Solution of hyperbolic equations
A specific peculiarity of the model is in the bound-

ary conditions of a special type. At each of the bound-
aries, boundary conditions are determined from a system
of ordinary differential equations, which also includes
unknown values of functions on another boundary. In
[Arguchintsev, 2023] the authors proposed a method of
constructing a characteristic difference grid based on a
linear transformation of a classical rectangular grid. Im-
plicit second-order difference schemes were used, taking
into account the above-mentioned features at the bound-
aries. The advantage of this approach is in consideration
of the specifics of the propagation of perturbations in hy-
perbolic equations. The solution of the conjugate prob-
lem (8) – (9) is symmetric to the solution of the original
initial boundary value problem (1) – (5).

4.2 Two-parameter maximum principle method
Iterative processes of the maximum principle are based

on the constructive use of the needle variation of con-
trols. A rather detailed analysis of these methods for op-
timal control problems of ordinary differential equations
is given in [Vasiliev, 1990], and for boundary control op-
timization problems in hyperbolic systems is in [Arguch-
intsev, 2007]. In this paper, a two-parameter version of
the iterative maximum principle method is applied to the
problem (1) – (7).

Let V = [v, v]. Let us describe the k-th iteration
of the method. Let the control vk(t), the solutions
xk(s, t), yk(s, t) of the initial boundary value problem
(1) – (5) and the solutions pk1(t), p

k
2(t) of the conjugate

problem (8) – (9) corresponding to this control be com-
puted at the previous iteration. Let’s construct a function

ωk(v, t) = h(pk, xk, yk, v(t), t)−h(pk, xk, yk, vk(t), t).
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At the points t ∈ T we find the control from the maxi-
mum condition

vk(t) : ωk(t) = ωk(v
k(t), t) = max

v∈V
ωk(v, t).

Let’s calculate the value

θk =
1

(t1 − t0)

∫
T

ωk(t) dt.

Obviously, if θk = 0, then the control vk(t) satisfies the
maximum principle and the iterative process ends.

If θk > 0, then let us construct a two-parameter family
of controls

vkε,α(t) = vk(t) + χε,α(t)(v
k(t)− vk(t)), t ∈ T,

where χε,α is a variation function

χε,α(t) =

{
α, t ∈ Tk(ε),
0, t ∈ T \ Tk(ε).

Here Tk(ε) is one-parameter family of sets from the seg-
ment T , whose measure depends linearly on ε ∈ [0, 1],
and α ∈ (0, 1] is a parameter. Specific methods for con-
structing sets Tk(ε) are given in [Vasiliev, 1990]. In this
paper, we choose as Tk(ε) the union of segments satis-
fying the condition {t ∈ T : ωk(t) ≥ θk}.

The next approximation is found as a solution of the
two-parameter problem

J(vkε,α) → min
ε,α

.

When α = 1, the convergence of this method to the
fulfillment of the maximum principle in the sense of
θk → 0, k → ∞ is proved in [Vasiliev, 1990]. The
introduction of the second parameter α complicates a so-
lution of the problem, but allows to work constructively
with inner control functions.

The method is theoretically more accurate than
classical one-parameter maximum principle methods.
However, the need to solve a two-parameter finite-
dimensional optimization problem at each iteration sig-
nificantly complicates the computational process. To
calculate a value of the cost functional at each set of pa-
rameters we have to solve the initial-edge problem for
the hyperbolic system every time. In the numerical solu-
tion, the method of coordinate descent for each of the pa-
rameters was applied. A dichotomy method was applied
for descent on each variable. The stopping condition was
non-improvement of the cost functional.

4.3 Conditional gradient method
The method is based on using the linearized maxi-

mum principle (11). In the example considered next,
G2(v, t) = v. For linear variants of the function G2,
the auxiliary control vk(t) is the same as in subsection

4.2. The one-parameter family of controls is constructed
by the rule

vkα(t) = vk(t) + α(vk(t)− vk(t)), t ∈ T, α ∈ [0, 1].

The next approximation is found from the solution of the
one-dimensional optimization problem

J(vkα) → min
α
.

Since there is no need for an exact solution to this prob-
lem, the point of the local minimum a1 close to 1 is se-
lected. In the next step, the problem is already consid-
ered in the segment [0, a1], etc.

Structurally, in the example considered next the
method coincides with a conditional gradient method in
the functional spaceL2(T ). This is due to the linearity of
hyperbolic and ordinary differential equations. It should
be noted that usually the conditional gradient method is
applied under stronger conditions on the parameters of
optimal control problems than the conditions of Pontrya-
gin’s maximum principle [Vasil’ev, 2002].

4.4 Method of mathematical programming
The corresponding mathematical programming prob-

lem is constructed on the characteristic difference grid.
We solved the minimization problem using the Python
library SciPy version 1.13.0. The solver implements a
modification of the quasi-Newton method BFGS (Broy-
den – Fletcher –Goldfarb – Shanno algorithm) [Nocedal,
2006]. The “minimize” function of the “Optimize” mod-
ule of this library was used to solve the problem. Dis-
cretization procedure is based on a characteristic implicit
difference grid for the boundary value problem [Arguch-
intsev, 2023]. Piecewise linear controls were used.

5 Computational experiment
The following problem was chosen for the computa-

tional experiment:

∂x

∂t
−∂x
∂s

= −2s·x+4

3
s2·y+4s3 sin t+2 cos t+

4

3

s2 cos t

s+ 1
,

∂y

∂t
+2

∂y

∂s
= − 3s+ 1

4(s2 + 1)(s+ 1)
x+

4

(s+ 1)(3s+ 1)
y,

x(s, 0) = 0, y(s, 0) =
3s+ 1

2(s+ 1)
;

∂x(s1, t)

∂t
=

4 cos t

cos t− 4 sin t
(y(s1, t)− x(s1, t)),

∂y(s0, t)

∂t
= v(t) · (x(s0, t)− y(s0, t));
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S = [0, 1], T = [0, 0.2].

For simplicity, it is assumed that the control u(t) is fixed:

u(t) =
4 cos t

cos t− 4 sin t
.

Thus, the cost functional depends on v(t) only:

J(v) =

∫
S

[x(s, t1)− x∗(s, t1)]
2ds+

+

∫
S

[y(s, t1)− y∗(s, t1)]
2ds→ min .

This functional is equal to 0 at

x∗ = 2(s2 + 1) sin t, y∗ =
3s+ 1

2(s+ 1)
cos t.

The corresponding optimal control is

v∗(t) =
sin t

cos t− 4 sin t
.

For the numerical solution, the segment S was divided
into 100 nodes. A characteristic difference grid is con-
structed on the base of a linear transformation of a clas-
sical rectangular grid [Arguchintsev, 2023]. In total, the
characteristic difference grid consists of 5763 nodes.

The calculations were carried out for the following ini-
tial controls v0(t):

a) v0(t) ≡ 0, t ∈ T ;
b) v0(t) = v∗(t) + 1, t ∈ T ;
c) v0(t) = v∗(t) · sin(50t), t ∈ T ;

d) v0(t) =
{
−1, 0 ≤ t < 0.1,
1, 0.1 ≤ t ≤ 0.2.

The stopping condition was non-improvement of the
cost functional.

The corresponding results are shown in Figures 1–4
and Tables 1–4.

Table 1. Results for initial control a

method MPM CGM IMPM

times (sec) 4.5 50.0 392.3

max |∆t1x| 9.5e-06 7.8e-06 6.9e-06

max |∆t1y| 1.0e-02 4.7e-03 2.0e-03∫
S
(∆t1x)

2ds 2.6e-11 1.4e-11 1.7e-11∫
S
(∆t1y)

2ds 1.0e-05 4.9e-06 2.1e-07∫
T
(∆s0v)

2dt 2.7e-02 4.8e-03 8.3e-03

J 1.0e-05 4.9e-06 2.1e-07

Here the following abbreviations and designations
are used. The abbreviations “MMP”, “CGM”, and
“IMPM” are used for the mathematical program-
ming method, conditional gradient method, and it-
erative maximum principle method, correspondingly.
max |∆t1x| and max |∆t1y| are the maximum modulo
deviations of the calculated values xk(s, t1), yk(s, t1)
from the optimal values x∗(s, t1), y∗(s, t1) on the seg-
ment T;

∫
S
(∆t1x)

2ds and
∫
S
(∆t1y)

2ds are squares
of norm in L2(T ) deviations of the calculated
values xk(s, t1), y

k(s, t1) from the optimal values
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Figure 1. Results for initial control a.
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Figure 2. Results for initial control b.

Table 2. Results for initial control b

method MPM CGM IMPM

times (sec) 43.6 51.4 395.4

max |∆t1x| 6.0e-06 5.9e-06 4.9e-06

max |∆t1y| 7.9e-03 1.8e-03 3.3e-03∫
S
(∆t1x)

2ds 1.1e-11 1.1e-11 8.0e-12∫
S
(∆t1y)

2ds 5.1e-06 2.7e-07 1.5e-06∫
T
(∆s0v)

2dt 4.8e-02 4.4e-03 9.5e-03

J 5.1e-06 2.7e-07 1.5e-06
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Figure 3. Results for initial control c.

Table 3. Results for initial control c

method MPM CGM IMPM

times (sec) 4.5 50.4 391.2

max |∆t1x| 9.3e-06 7.9e-06 7.8e-06

max |∆t1y| 8.4e-03 4.6e-03 1.9e-03∫
S
(∆t1x)

2ds 2.3e-11 1.5e-11 2.1e-11∫
S
(∆t1y)

2ds 9.2e-06 4.8e-06 4.2e-07∫
T
(∆s0v)

2dt 2.7e-02 9.5e-03 1.5e-02

J 9.2e-06 4.8e-06 4.2e-07

Table 4. Results for initial control d

method MPM CGM IMPM

times (sec) 39.2 47.6 391.2

max |∆t1x| 7.0e-05 6.0e-06 5.0e-06

max |∆t1y| 2.9e-02 2.7e-03 4.6e-03∫
S
(∆t1x)

2ds 8.2e-10 1.2e-11 9.7e-12∫
S
(∆t1y)

2ds 1.1e-04 3.5e-07 3.8e-06∫
T
(∆s0v)

2dt 2.8e-01 1.6e-02 3.2e-02

J 1.1e-04 3.5e-07 3.8e-06

x∗(s, t1), y
∗(s, t1);

∫
T
(∆s0v)

2dt are squares of norm
in L2(T ) deviations of the calculated values vk(t) from
the optimal values v∗(t). Computation times are for
the home computer used (Intel(R) Core(TM) i3-10105F
CPU @ 3.70GHz).

In all figures, the values of the time variable are given
on the abscissa axis. The values of control functions are
given on the ordinate axis. Each of the graphs contains
four curves, namely, the curve corresponding to the opti-
mal control and the controls found by the corresponding
three methods.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t

−1.0

−0.5

0.0

0.5
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v(
t)
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analytical
MPM
CGM
IMPM

Figure 4. Results for initial control d.

Let’s briefly characterize the results of the numerical
experiment.

First, the conditional gradient and maximum principle
methods give relatively similar results in terms of accu-
racy. However, the realization of the maximum princi-
ple method requires much more time. This is due to the
need to solve a two-parameter optimization problem. In
order to calculate the cost functional value at each set
of parameters, it is necessary to solve the initial bound-
ary value problem for the hyperbolic system. It was
theoretically expected that the two-parameter maximum
principle method should provide greater accuracy than
all other methods. However, computational experiments
have disproved this assumption. This is probably due to
the linearity of the dynamical systems under considera-
tion.

Second, the mathematical programming method is the
most time efficient. This is probably due to the good
debugging of the standard Python library. The final val-
ues are worse than the results calculated by the condi-
tional gradient and maximum principle methods. How-
ever, these results are quite satisfactory. It should be
noted that the structure of the control obtained by math-
ematical programming is often quite different from the
optimal one.

Conclusively, the conditional gradient method may be
recommended for solving the problem under considera-
tion. It is possible that this is due to the linearity of the
differential equations (1), (2) and (3), (4).

6 Conclusions
A quantitative comparison of numerical methods for

solving the problem of optimal control of a distillation
column has been carried out. The results show that the
methods that use the necessary optimality conditions of
pointwise and linearized maximum principles types give
the result close to the structure of the true optimal con-
trol under different initial approximations. It turned out
that the one-parameter conditional gradient method is
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not worse in accuracy than the method based on the iter-
ative maximum principle, but at the same time it is much
faster. It is possible that the maximum principle method
can provide greater accuracy for non-linear dynamical
systems.
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