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Abstract 

Nonlinear dynamic systems can be described by 
means of statistical learning theory: neural 
networks and kernel machines. In this work the 
recurrent least-squares support vector machines 
are chosen as learning system. The unknown 
dynamic system is a mapping of past states into 
the future. The recurrent system is implemented 
by special data preparation in the learning phase. 
The next iterations can be calculated but the 
convergence is usually not guaranteed. Due to the 
fact that the predicted trajectory can diverge from 
the real trajectory the semi-directed mode can be 
applied, i.e. after several prediction steps the 
system is updated by using the current values of 
the considered process as new initial conditions.  
The idea was tested on the data generated by the 
chaotic dynamic system – the Chua’s circuit. The 
methodology was then applied to real magnetic 
data acquired at Etna volcano.  
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1. Recurrent Least-Squares Support Vector 
Machine  

Least-squares support vector machine (LS-SVM) 
originates by changing the inequality constraints 
in the support vector machine (SVM) [1] 
formulation to equality constraints with objective 
function in the least squares sense [2, 3, 4].  
The learning set for the regression task consists of 
pairs: input vectors and the target function value 
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The LS-SVM can be formulated as the following 
constraint optimization problem: 
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Kernel function: 
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The solution can be expressed as the linear 
combination of kernels weighted by the Lagrange 
multipliers: 
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Hence, the learning of this system is performed by 
solving the system of linear equations  
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We use the RBF kernel: 
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The global minimizer is obtained in LS-SVMs by 
solving the set of linear equations (instead of 
quadratic programming in case of SVM). 
However the sparseness of the support vectors is 
lost. In SVM, most of the Lagrangian multipliers 
αi are zeros while in LS-SVM the Lagrangian 
multipliers αi are proportional to the errors ei. 

In order to obtain the recurrent model of a given 
dynamic data we adopt the LS-SVM system  for 
learning of dynamical feedback systems. 
The learning algorithm consists of 2 phases. In the 
phase 1 the model state inputs are delayed 
measured output values of the process for the 



 

input-output representation. Based on the learning 
data set 
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the LS-SVM model is prepared 
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In the learning phase 2 the measured output values 
are replaced by the estimated output values of the 
predictor before performing the new learning 
phase. The procedure is described by following 
pseudo-code: 

 
for n=1 to 2 do 
  Estimate output values: 
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  Prepare new learning set: 
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  Create new LS-SVM model: 
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The organization of the data preparation is 
explained in Tables 1 and 2. 
 
Table 1. The structure of learning data for the 
recurrent LS-SVM – learning phase I. 
X input of LS-SVM Y output of LS-

SVM 
Y(0) Y(1) Y(2) Y(3) 
Y(1) Y(2) Y(3) Y(4) 
… … … … 
Y(i) Y(i+1) Y(i+2) Y(i+3) 
 
Table 2. The structure of learning data for the 
recurrent LS-SVM – learning phase II. 
X input of LS-SVM Y output of LS-

SVM 
Y’(3) Y’(4) Y’(5) Y’(6) 
Y’(4) Y’(5) Y’(6) Y’(7) 
… … … … 
Y’(i) Y’(i+1) Y’(i+2) Y’(i+3) 
 
Y(i) – function value (measured) 
Y’(i) - function value (predicted from recurrent 
LS-SVM) 
Our approach differs from that presented in [4]. 
The organization of the learning phase follows the 
suggestion presented in [7]. 

2. Recurrent LS-SVM model of Chua’s circuit 

We tested our recurrent LS-SVM for artificial data 
set generated by the Chua’s circuit. The dynamics 
of Chua's circuit can be described by a system of 
three nonlinear ordinary differential equations [8]: 
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where the function f(x) describes the electrical 
response of the nonlinear resistor, and its shape 
depends on the particular configuration of its 
components. The parameters α and β are 
determined by the particular values of the circuit 
components. 
 

 

 

  

 

 

  
Figure 1 - Dynamics of the Chua’s circuit (top). 
Measured values (solid line) and predicted values 
calculated by recurrent LS-SVM (thin line) - 
bottom.  
 
We applied the recurrrent LS-SVM that learned 
the Chua’s circuit dynamics based on 3 delayed 
values of the chosen component x(t). The results 
shown in Fig. 1 confirm the ability of this learning 
system to simulate the deterministic chaotic 
dynamics. 
 



 

3. Magnetic data analysis on Etna volcano 

Over the last decades different analyses have been 
devoted to reveal the presence of the chaotic 
motion in geomagnetic time series in volcanic 
areas [5,6]. The geomagnetic time series from the 
magnetic network on Etna volcano (Fig. 3, 4) are 
analyzed to investigate the dynamical behavior of 
magnetic anomalies. The predictability of the 
geomagnetic time series was evaluated to establish 
a possible low-dimensional deterministic 
dynamics.  
 

 
Figure 2. Magnetic monitoring network on Etna 

volcano. 
 

The analysis of the 10-minutes differences at PDN 
with respect to the reference station CSR (located 
far away from the volcano edifice) shows 
prominent peaks centered around diurnal 
components at the period of 8, 12 and 24 h. After 
having removed the dominant periodic 
components, the filtered differences appear to be 
aperiodic and broadband (Fig. 3, 4). Therefore, we 
look at the recurrent least-squares support vector 
machine approach as a way to provide evidence on 
the mechanism generating the time dependent 
variations. 
The data from PDN station was firstly normalized 
to the range [-1,1]. We used a learning data set 
from 7th to 14th January 2008. The testing data set 
spans from 15th to 21st January 2008.   
The recurrent LS-SVM parameters are as follows: 
kernel type ‘RBF’ kernel, regularization parameter 
γ=2.13, kernel width σ=0.264. The current process 
value is calculated based on 3 previous measured 
values. 
 

 
Figure 3. Learning data set from PDN station (7th 
to 14th January 2008). 

 
Figure 4. Testing data set from PDN station (15th 
to 21st January 2008). 

 
Figure 5. Results of simulation on the testing data 
set using recurrent LS-SVM. 

 

 
Figure 6. The Absolute Percentage Error on the 
testing data set. 



 

The predictions are shown in fig. 5. The goodness 
of the model can be evaluated using Absolute 
Percentage Error (APE) defined as: 
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The APE is shown in Fig.6. The Mean Absolute 
Percentage Error (MAPE) equals -0.13 %, while 
the Root Mean Squared Error (RMSE) is 0.796. 
 
The same recurrent LS-SVM was applied for the 
simulation of the data from 7th to 21th May 2008 
(Fig. 7). On 13th May 2008 significant local 
magnetic field changes occurred which marked the 
resumption of the eruptive activity.  

 
Figure 7. Testing data set from PDN station (7th to 

21st May 2008). 

 
Figure 8. Results of simulation on the testing data 

set (7th to 21st May 2008). 

 
Figure 9. The Absolute Percentage Error on the 

testing data (7th to 21st May 2008). 
 

We assumed that the performance of the recurrent 
LS-SVM trained on the data where no significant 

magnetic changes occurred would be lower when 
applied to the data where such changes occurred. 
Fig. 9 shows the APE values. The MAPE and 
RMS values (Fig. 10, 11) were calculated for the 
25 hour periods. Increased error rate is clearly 
visible at the point corresponding to occurrence of 
significant magnetic changes. 
 

 
Figure 10. The Mean Absolute Percentage Error 
on the testing data  (each bar represents 25 hour 
period). The data spans from 7th to 21st May 
2008. 

 

 
Figure 11. The Root Mean Square Error on the 
testing data  (each bar represents 25 hour period). 
The data spans from 7th to 21st May 2008. 

4. Conclusion 

In this paper, identification methods are dedicated 
to understanding and describing the temporal 
dynamics of a geomagnetic time series gathered 
on Etna volcano. The results could have important 
implications on the study of the dynamical 
behavior of the volcanomagnetic signals. They 
underline that volcanomagnetic signals are the 
result of complex processes that cannot be easily 
predicted. The application of recurrent LS-SVM 
forecasting techniques has not provided strong 
evidence of nonlinear deterministic dynamics in 
volcanomagnetic data. 
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