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Abstract
Problems of nonlinear modeling, dynamic analysis,

simulation of spatial motion by a spacecraft with s flex-
ible weak damping structure, are considered. The ob-
tained results on a multi-rate filtering measurements
and a width-pulse modulation of the jet engine thrust
control, simulation and animation for the communica-
tion satellite with large-scale solar array panels by the
Sesat type at modes of initial damping and guidance on
the Sun and on the Earth, are represented.
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1 Introduction
For large-scale spacecraft (SC) the structure oscilla-

tions can render an essential influence on its spatial mo-
tion, it is especially for an initial mode after separation
from a launcher, and also at the SC initial guidance on
the Sun and on the Earth. Modern computer technol-
ogy allows to obtain a dynamic analysis and a video-
display the SC structure deformations during its spatial
motion. That it is very useful at a SC designing and
flight support. The SC Sesat (fig. 1) with large-scale

flexible solar array panels

Figure 1. The satellite Sesat.

(SAPs) was developed by
Reshetnev NPO PM(Rus-
sia) under the contract
with Eutelsatand was re-
moved on geostationary
orbit in April 2000. In
the paper for this type SC
the spatial motion mod-
els are created at a width-
pulse modulation (WPM)
of control by jet en-
gines and the SAPs’ bend-

turning oscillations, results on a control laws’ synthesis
for the initial modes, simulation and animation both the
SC body and the SAPs motion, are presented.

2 Modeling a satellite structure motion
A lot of publications were devoted for a choice of dy-

namic schemes, methods for deriving and research the
flexible SC motion equations, analytical reviews are
well-known, but the problem of development the effec-
tive methods for modeling dynamics and imitation of
the SC motion is remained actual. At deriving the ap-
proximate models of the flexible SC motion the Reley-
Ritz-Galerkin method – the method of the prospec-
tive oscillation forms, is most known. At synthesis
of the SC dynamic models with non-rigid structure the
method of fixed elements (MFE) is widely applied. The
MFE represents a located method of prospective oscil-
lation forms.
Having doubtless ad-

Figure 2. The lowest tones

vantages and advanced
software (NASTRAN,
ASKA, SAP-IV etc.), the
MFE generates models
with rather high dimen-
sion reaching several
thousand on degrees of
freedom for complex ram-
ified spacecraft structures.
Peculiarity of the applied
approach consists in pre-
sentation of the structure elements’ flexible oscillations
by fixed number of tones. Here calculation is carried
out by the MFE with condensation (reduction) on the
oscillation tones, the factor matrixes of interference for
motions of all sub-structure both rigid and deformable
bodies, are also calculated by computer. Own forms
and own partial frequencies of flexible oscillations by
each SAP for the SC Sesat was carried out taking into
accountnq = 10 lowest tones in standard normaliza-
tion, fig. 2. Design scheme of the SAPs’ first wing
for spacecraftSesatis represented in fig. 3) by the
fixed-element model consisting 129 main points where
33 points are the concentrated weights, and 205 beams
with five various geometrical and two various physical
properties (Butyrin and Somov, 2004).



Figure 3. The design scheme for the SAPs’ first wing of spacecraft Sesat by method of fixed elements.

The model of the angular motion dynamics by the
spacecraft with active flexible SAPs was elaborated at
assumptions

• position of the mass center for all mechanical
system have small differ from nominal position –
a pole O at derivation of nonlinear equations for
system spatial motion;
• the SAPs move according to command rate as
piece-constant time function that is caused by step-
by-step gear driver (SGD) with self-braking.

That model have the form

Ao

[
ω̇
q̈

]
=

[
Fω

Fq

]
;Ao =

[
J(γ) Dq(γ)

(Dq(γ))t I2nq

]
;

Fω ≡ −ω ×G + Mdo
o + Mp

o + Mo;

Fq ≡ −(D q̇ + W q + (Dq
3(γ))

t γ̈).

(1)

Hereω = {ωx, ωy, ωz} is a vector of the SC angular
rate in the body reference frame (BRF)Oxyz, the in-
ertia tensorJ = J(γ)=Jo + 2Jp(γ) at any position
of the SAPs, determined by a angleγ, and the inertia
tensor for each wing of the SAPs is as follows:

Jp(γ) =

J
p
xC2

γ + Jp
y S2

γ Jpd
xy CγSγ 0

Jpd
xy CγSγ Jp

xS2
γ + Jp

y C2
γ 0

0 0 Jp
z

 ,
whereJpd

xy = Jp
x − Jp

y andCγ = cos γ; Sγ = sin γ.
Rectangular matrixDq(γ) of an inertial influence by
the SAPs and the SC body motions is represented by
matrix-lineDq = [Dq

1,D
q
2], and the structure of ma-

trixes Dq
1 andDq

2 by flexible SAPs inertial influence
is those: the matrixDq

k = {Dq
k1,D

q
k2,D

q
k3} is repre-

sented by column, whereDq
kj is line. Herej = 1, 2, 3

is the line number andk = 1, 2 is the wing number.
Then,G = J(γ) ω+H+Dq(γ) q̇ is vector of the flex-
ible SC angular momentum whereH is vector of the
gyro stabilizer’s own momentum and the torque vector

Mp
o =


(Jpd

xy (S2γωx − C2γωy)− 2Jp
z ωy) γ̇

−(Jpd
xy (C2γωx − S2γωy) + 2Jp

z ωy) γ̇

−2Jp
z γ̈


presents the inertial-gyroscopic forces, caused by the
SAPs activity. Vectorq = {q1,q2} presents the gen-
eralized coordinates of the SAPs flexible oscillations,
qk ∈ Rnq

is vector of the same coordinates by k-
th wing. Diagonal matrixΩk = diag{Ωks} is made
from partial frequenciesΩk s, s = 1 : nq and δ is
logarithmic decrement of the SAPs’ oscillations, ma-
trixesΩ = diag{Ω1,Ω2}, D = (δ/π)Ω, W = Ω2,
Dq

3 = {Dq
13,D

q
23}. VectorMo = Mg

o + Ms
o presents

external torques with respect to a pole O, whereMg
o

is a vector of gravitational torque andMs
o – a torque

vector by forces of solar pressure. At last, vectorMdo
o

presents the orientation engine unit (OEU) torques.
The motion model of the SC body with active SAPs is

easily turned out from (1) and have the form

J ω̇ + ω × Jω = Fω ≡ Mdo
o + Mp

o + Mo. (2)

The BRF orientation with respect to orbital reference
frame (ORF)Oxoyozo is defined by quaternionΛo ac-
cording to the differential equation

Λ̇
o

=
1
2

(Λo ◦ ω − ν̇o
o ◦Λo), (3)

where vector-columṅνo
o(t) = {0, 0, ν̇o(t)} represents

a vectorν̇o(t) of the SC orbital angular rate in projec-
tions on the ORF axes andνo(t) is true orbital anomaly.



The SC orbit is considered known,direction of unitE
on the Earth is also known, thus the vector of gravi-
tational torqueMo is represented by analytical depen-
dence only from quaternionΛo of the SC orientation
with respect to the ORF.
The BRF attitude with respect to the inertial reference

frame (IRF) is defined by quaternionΛ according to
the differential equatioṅΛ = Λ ◦ω/2. Therefor direc-
tion of unit S on the Sun is also known and a torque
vectorMs

o by forces of solar pressure is represented by
analytical relations.

3 Models of the control system’s components
The instrument set of the SC attitude control

system (ACS) in the initial damping mode con-
sists the OEU based on six thermo-catalytic jet

engines (JEs) with the

Figure 4. The SS scheme.

thrust WPM, a block of
three one-axial angular
rate sensors (ARSs), the
SGD and an angular posi-
tion sensor by two SAPs’
wings with respect to the
SC body, and also on-
board computer. At mode
of the SC guidance on the
Sun in the ACS instru-
ment composition is com-

pleted by the Sun sensor (SS) with wide segmented
field-of-view (fig. 4) and at mode of the SC guidance
on the Earth — by the Earth sensor (ES) with narrow
field-of-view, fig. 5. Standard denotations for values of
a scalar discrete signaly(tk) = yk andy(ts) = ys are

further applied at the

Figure 5. The ES scheme.

time moments tk =
k Tu with the control
period Tu and multiple
by their the time mo-
ments ts = s Tq with
the measurement period
Tq where integersk, s ∈
N0 ≡ [0, 1, 2, ...), more-
over the multiple index
nq = Tu/Ts.

3.1 The OEU model
For the WPM of normalized command by the thrust

inclusion Pn(t, τd
k ) ∈ {0, 1}, k ∈ N0 by each

JE, namelyPn(t, τd
k ) = 1 ∀t ∈ [tk, tk + τd

k ) and
Pn(t, τd

k ) = 0 ∀t ∈ [tk + τd
k , tk+1) the modu-

lation characteristic is described by the ratioτd
k =

ϕd(τm, τm, Tu, τk) :

τd
k =


0 τk < τm;
τk τm ≤ τk < τm;
τm τm ≤ τk < Tu;
Tu τk > Tu.

(4)

Taking into account a time (transport) delayT d
zu dy-

namic processes on the normalized thrustPn
d (t) for

each JE are presented by the differential equation
T d Ṗn

d + Pn
d = Pn(t − T d

zu, τ
d
k ) with the initial con-

dition Pn
d (t0) = 0 where a time constantT d accepts

two valuesT d
+ or T d

− according to the ratio:ifPn =
1 then T d = T d

+ else T d = T d
−. For everyone j-

th JE Dj , j = 1 : 6 there is compared the vector
Pj(t) = Pm Pn

d (t) pj of the current jet thrust with
fixed unitpj beginning in a pointOd

j wherePm is the
current maximal thrust value, identical for all JEs. The
pointOd

j arrangement is defined by a radius-vectorρj .
The OEU control torques concerning axesOx, Oy and
Oz are created by JEs’ pairs. Logic of the command
τjk formation for inclusion everyone j-th JE takes into
account a sign of a command signalvik on channeli =
x, y, z and is described by such algorithm:τik = |vik|;
sik = sign vik; i = x, y, z and then, for example
for i = x : if sxk > 0 then (τ1k = τxk&τ2k = 0)
else (τ1k = 0&τ2k = τxk). Formed by the OEU the
control torque vectorMdo

o is calculated by formula

Mdo
o ≡ M = {Mx,My,Mz} =

6∑
j=1

ρd
j ×Pj . (5)

3.2 Model of the SC body rate measurement
The model of the ARS block for measuring the SC

body rate vector represents by set of three same chan-
nels for measurementωi(t), i = x, y, z, moreover
model of each its channel takes into account: own dy-
namical properties; a noise and systematic errors; a
time sampling, quantization and limit levels. Descrip-
tion of the measurement process for a projection of an-
gular rateω(t) is presented as follows:

Tωω̇s(t) + ωs(t) = ω(t);

ωse(t) = Sats(aω, kω, ωs(t) + bω);

ωσ
s = ωse(ts) + ωn

s ;ωd
s = Qntr(dω, ωσ

s ).

(6)

HereTq is a time sampling period andTω is a time con-
stant;aω andkω are a restriction level and the normal-
ized gain; there are applied the standard functionsy =
Sats(a, k, x) : if |x| ≤ a/kthen y = k x else y =
asign x andy = Qntr(d, x) = d E[(x/d)+0.5 signx]
whered is a quantization step andE[·] is a symbol of
the whole part for number[·]; bω is slowly varied ”zero
drift”; ωn

s is discrete noise of measurement which is
considered as Gauss stochastic discrete process with a
zero mean and root-mean-square deviationσω; dω is
a quantization step by an output signal, at lastωd

s is a
discrete output signal.

3.3 Models of the Sun and the Earth sensors
The SS outputs are a signNs of the Sun presence into

its field-of-view and the spherical angular coordinates
θS , ψS of unit S with respect to the BRFOx axis, see



fig. 4 . The SS digital output signalsθd
Ss andψd

Ss then
are filtering by a computer processing. The ES outputs
are a signNe of the Earth presence into its field-of-view
and digital values of pitch angleθd

s and roll angleϕd
s ,

see fig. 5.

3.4 Model of control contour at the SAPs guidance
The control contour by the SAPs position sensor and

the GSD is presented by set of a discrete subsystem
with forming error εγ

k = γc
k − Qntr(dγ , γk) and a

piecewise-continuous partγ̇(t) = Zh(Tu, γ̇
d
k ) with ini-

tial conditionγ(t0) = γ0. Hereγ c
k is a discrete com-

mand signal,γ̇d
k = kγ εγ

k and the holder with period
Tu is such:y(t) = Zh[Tu, xk]= xk ∀t ∈ [tk, tk+1).

4 Algorithms of discrete filtering and control
Operator for averaging with identical weights onlynq

last measurementsys of a signal with obtaining an es-
timation ȳk, optimum on method of the least squares,
have the description

ȳk = MS (ys) ≡ (
k∑

s=k−nq+1

ys)/nq; k = E[s/nq].

For example, for SC Sesat it is acceptedTq = 1 s and
Tu = 4 s, therefore the multiple indexnq = 4. That
operator is applied for multiple filtering the discrete
output signalsωd

is of the ARSs on channels (i=x, y, z)
and the discrete output signals of the SS and the ES:

ω̄ik = MS(ωd
is);

θ̄Sk = MS(θd
Ss); ψ̄Sk = MS(ψd

Ss);

ϕ̄k = MS(ϕd
s); θ̄k = MS(θd

s ).

(7)

At initial damping mode, forming the discrete com-
mand signalsvik on channels is defined as follows:

vik = kω
i (ωc

i − ω̄ik), i = x, y, z. (8)

Herekω
i are the gain factors which are formed by re-

lationskω
i = kp cω

i ; kp = Pm
f /P

m, wherekp is the
adjusted parameter for compensation of the JE’s thrust
variation;cω

i — values of the gain factors at a minimum
levelPm

f of the JE’s thrust.
For guidance the SC on the Sun by shortest way after

its appearing into the SS field-of-view (e.g. atNs = 1)
the discrete vector control algorithm is suggested. Let
us a constant vectorbs for required position of the unit
S in the BRF and vectorpk = {p1k, p2k, p3k} is com-
puted by relationpk = bs × S̄k(θ̄Sk, ψ̄Sk). According
to elaborated algorithm there is forming a preliminary
discrete signal̃vik = −kp(k

p
i pik+kω

i ω̄ik), i = x, y, z.
Than valueṽm

ik = max(|ṽik|, i = x, y, z) is com-
puted and at conditioñvm

ik > Tu the resulting dis-
crete controls on channels are scaling by simple for-
mulavik = Tu ṽik/ṽm

ik, i = x, y, z.

5 Dynamical properties of flexible spacecraft
Both linear and nonlinear methods were applied for

dynamical research of the robust SC ACS with a width-
pulse modulation of the jet engine thrust control.
After separating a SC from buster and disclosing the

SAPs at any time momentt = t0 the angular rate vec-
tor accepts a valueω(t0) ∈ Sω from the bounded con-
vex domainSω. Let the constant command valuesωc

i

(components of the command angular rate vectorωc)
are given and them should be reached with given accu-
racy|ωi(t)−ωc

i | ≤ δω ∀t ≥ t0+Tr for some acceptable
durationTr of damping mode. For spacecraft by Sesat
type at this mode additional requirement consists in a
simultaneous turning the SAPs on the angle3π/2 with
respect to the SC body. In this mode at any SAPs fixed
position and the gyro stabilizer momentumH = 0, lin-
earized in the IRF the continuous model of free flexible
SC controlled motion have the form

A1{ω̇, q̈, q̇} = B1{δω, q̇,q}+ {M,0,0}, (9)

whereδω = ω − ωc and matrixes

A1 =
[
Ao 0
0 I2nq

]
;B1 =

[
0 0
0 Bo

]
;Bo =

[
−D −W
I2nq 0

]
.

For calculation of the SC transfer functions, the sys-
tem (9) is presented in the standard form of linear con-
trol systemẋ = Ax + Bu; y = Cx, where for
this casex = {δω, q̇,q}, u = M, and matrixes
A = A−1

1 B1; B = A−1
1 {I3,0,0} andC = [I3,0,0].

The logarithmic frequency characteristics of continu-
ous system from an inputui to an outputyi, i = x, y, z
were obtained by specialized software. For multiple
continuous-discrete ACS taking into account the differ-
ent delays both a discrete measurement of the state vec-
tor and a physical forming the WPM control original
methods (Somov, 2001) were applied (Somov, 2005b;
Somov, 2005a). As an example, the logarithmic am-
plitude frequency characteristics subject to an absolute
pseudo-frequencyλ = (2/Tu)tg(ωTu/2) on the Sesat
open-loop pitch channel is presented in fig. 6 with
cωz0 = 713.385 s2/rad.
At mode of the SC guidance on the Sun we have

vector H = 0 and the SC searching motion is ful-
filled with respect to the BRF axisOy, e.g. vector

Figure 6. The logarithmic amplitude frequency characteristics on

Sesat open-loop pitch channel:a − cω
z = cωz0; b − cω

z =
2cωz0; c− cω

z = 4cωz0.



Figure 7. The logarithmic frequency characteristics of continuous

pitch channel: a) H=0; b) H =40 Nms; c) H =85 Nms.

ω = {0, ωy, 0}, for exampleωy = 0.2 deg/s. More-
over the pith and yaw channels have a weak gyroscopic
connection which is essential only for the slowly mo-
tions. At mode of the Earth searching yet all three SC
channels are gyromomently connected, but these influ-
ences are very weak. After finishing the Earth guidance
mode the gyro stabilizer rotor begins to up-rotate and
its own angular momentumH is increased up to value
H = 85 Nms. Fig. 7 presents the SC logarithmic fre-
quency characteristics of continuous pitch channel for
threeH values. Moreover it is appeared additional res-
onance peak by a nutation motion which is consistently
changed to the right with increasingH as a parameter.

6 Nonlinear stability analysis of channels
The Lyapunov function method was used for a non-

linear stability analysis (Somov, 2005a). At simplest
example, in a single-axis damping mode for the WPM
parametersTd = 0, T d

zu = 0, τm = 0, τm = Tu,
with an idealized measurement of angular rate and
for its variationδωk ≡ ωk − ωc ≡ xk, the nonlin-
ear channel discrete model is presented by the differ-
ence equationxk+1 = xk − bd Sat(Tu, vk); vk =
kω xk, wherebd ≡ dJ = Mm/J, kω and maximum
torque Mm are parameters. For Lyapunov function
vk ≡ v(xk) = |xk| there is derived the inequality
vk+1 = |xk − bd Sat(Tu, kω xk)| ≤ |1 − bd kω|vk for
xk 6= 0, moreoverv(0) = 0. In result the rigorous
condition for asymptotic stability of solutionxk =0 by
this nonlinear model have the form0 < bd k

ω < 2, i.e.
0 < kω < 2/bd.
In a single-axis attitude stabilization mode for same

the PWM parameters and the state vectorxk ≡
{δαk, δωk}, the nonlinear channel model have the form

xk+1 = Adxk + (bd + δbd(τk))Sat(Tu, vd
k);

vd
k = Kd xk; τk = Sat(Tu, |vd

k|);

Ad =
[

1 Tu

0 1

]
; bd = −dJ

[
Tu

1

]
;

δbd(τk) = dJ

[
τk/2

0

]
; Kd = [ kα kω ].

(10)

Let beµ ≡ 1 − dJk
ω;χ ≡ kω + kαTu;µCθ ≡ 1 −

djχ/2 andµSθ ≡ dj(4kαTu/dJ − χ2)1/2/2 for the
conditions0 < µ < 1 andχ < 2(kαTu/dJ)1/2. Then

Figure 8. The SC body angular rates and the OEU control torques.

nonlinear model (10) stability is proved by Lyapunov
functionvk ≡ v(xk) = (xt

k Vxk)1/2 with matrix

V ≡ (Tt T)−1; T ≡
[
TuµCθ TuµSθ

µCθ − 1 µSθ

]
,

where matrixT composed by eigenvectors of ma-
trix Ao

d ≡ Ad + bd Kd for its eigenvalues
z1,2 = µ(Cθ ± jSθ), j ≡

√
−1. For this Lya-

punov function there is derived the inequalityvk+1 ≤
(µ2 + avk + bv2

k)1/2 vk, where constant parameters
a > 0 and b > 0 are appeared during a majorizing
procedure. That inequality is the basis for obtaining
the rigorous conditions of asymptotic stability of solu-
tion xk = 0 by nonlinear discrete channel model and
also for estimating its guaranteed attracting set by the
inequalityxt

0Vx0 ≤ (a2 − 4b(µ2 − 1))/(4b2).

7 Parametric synthesis and analysis by imitation
Detailed nonlinear dynamical analysis of the flexi-

ble spacecraft ACS and parametric synthesis of dis-
crete control laws on channels were carried out by
methods of computer sumulation which were real-
ized at Matlab environment (Butyrin and Somov,
2004). In the initial damping mode for various ini-
tial conditions on coordinates on the SAPs’ oscilla-
tion tones analysis of the SC dynamics was carried
out. For example, at given initial conditionsq1(0) ≡
{q11, q12, q13} = {0.2,−0.3,−0.2}; q̇1(0) = 0;
q2(0) ≡ {q21, q22, q23} = {−0.2, 0.3, 0.1}; q̇2(0)=0
numerical results are presented in fig. 8 – fig. 10.
At the SC guidance on the Sun and on the Earth by

elaborated discrete control laws for a width-pulse mod-
ulation of the jet engine thrust, the SC structure flex-
ibility have smaller influence at comparison with the
initial damping mode yet for decrementδ = 10−3 of
oscillations.



Figure 9. Oscillations of 1-st wing on 1-st three tones.

Figure 10. Deviations of 1-st wing’s point#1 on fig. 3 in mm

from its equilibrium position.

8 The flexible SC motion animation
Russian software environmentSuper Vision(the NPO

PM development) was applied for animation of the SC
motion with flexible active SAPs. In used version of
this software the requirement specification is applied
for creation and tuning the reflected objects. Interface
between components of the elaborated software for
simulation and visualization of the SC flexible structure
motion is carried out by files on hard disk. In stage 1 the
SC damping mode simulation is fulfilled. In the Matlab
environment the Simulink is started, results of the sub-
system work are graphics of the transient processes on
the ACS state coordinates and the data files, which are
recorded on hard disk. In stage 2 the data preparation
is carried out for animation of the SC body motion and
the flexible SAPs’ oscillations by applied visualization
system. At loading the filepanel.svn there will be re-
flected the indicated SAPs’ wing oscillations, and if file
mnk.svn is loaded – the SC body motion in the ORF.
Some results obtained by the elaborated software are
presented in fig. 11.

9 Conclusion
Problems of nonlinear modeling, dynamic synthesis

and analysis, simulation and visualization of a flexi-
ble spacecraft spatial motion were considered. The ob-
tained results on a multiple filtering and a width-pulse
control for the communication satellite with large-scale
solar array panels were represented.
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Figure 11. The animation frames of the SC attitude motion.
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