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Abstract

The dynamics of two and three coupled Phase-
Locked loops is considered. In the bifurcation dia-
grams the domains of different dynamic regimes are
extracted.

1. A Phase-Locked loop (PLL) is one of the typical
systems of synchronization. It is a closed loop fre-
quency system; its functioning is based on the detec-
tion of phase difference between the input and output
signals of the controlled oscillators. PLLs have high
accuracy, reliability, noise resistance, controllabil-
ity, capability to provide high power and frequency.
These properties of PLLs make them highly promis-
ing for data communication by means of chaotic sig-
nals too. The dynamical chaos may be occurred ei-
ther in the single PLLs with the high order filter or in
the ensemble of the PLLs with the low order filters.
At the present time the ring of PLLs haven’t been
considered in the scientific literature; as a result this
paper is concerned with research of this rings.

2. In this part the dynamics of a ring of two phase-
locked loops is considered. The equation for such a
system is written as follows:

dϕ

dτ
= y,

dy

dτ
= z,

ε1ε2

dz

dτ
= γ − [(1 − κ1)b + 1 − κ2] sin ϕ − (1)

− (ε1 + ε2)z −

− {1 + [ε1(1 − κ1)b + ε2(1 − κ2)] cos ϕ}y.

Here, ϕ - current phase difference between the first
and the second partial generators, b, ε1,2 - parame-
ters of the partial systems, κ1,2 - parameters of the
connections. System (1) has been defined on the
3D phase cylinder U={ϕ(mod2π), y, z}, which makes
possible the existence of different types of attractors.

For the simplest case of the zero order filters, when
ε1,2 � 0, equation (1) can be written as follows:

dϕ

dτ
= γ − sinϕ[(1 − κ1)b + 1 − κ2] (2)
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Figure 1: Domains of the existence of syncronous and
nonsynchronous regimes of system (2).

Dynamical system (2) has two equilibrium states:
O1(ϕ

∗

1
= arcsin(γ/(1 + b − bκ1 − κ2))) and O2(ϕ

∗

2
=

π − ϕ∗

1
). If O1 is a stable equilibrium state, system

(2) works in the in-phased synchronous regime; if O2

is a stable equilibrium state, system (2) works in the
antiphased synchronous regime. The results of the
investigations of system (2) are presented in fig.1.

The dynamics of system (1) is considered in two
cases: when the in-phased synchronous regime is re-
alized and when the antiphased synchronous regime
is realized.The analysis of model (1) shows that for
ring of two PLLs with a first-order filter the following
dynamic modes are typical:

– synchronization of the partial generators, i.e., the
frequencies of the generators become equal, and the
phase difference between them takes on a constant
value. Stable equilibrium states with co-ordinates
O1(ϕ

∗

1
= arcsin(γ/(1 + b − bκ1 − κ2))) or O2(ϕ

∗

2
=

π − ϕ∗

1
) correspond to this mode in the phase space

U ;

– quasi-synchronization, when the phase difference
between generators fluctuates around some average
value. Regular attractors L0 [Fig. 2(b)] and L2

0
[Fig.

2(d)] correspond to this mode in the phase space U ;

– regular or chaotic beats, when the phase difference
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Figure 2: The bifurcation diagram and phase portraits
of system (1) for b = 1.5, κ1 = 3.2, κ2 =
−4.2, ε1 = 15.

between generators grows without restriction. Ro-
tatory or oscillatory-rotatory (with phase difference
advance ϕ more than 2π) attractors that may be ei-
ther regular [Fig. 2(a),(c)] or chaotic [Fig. 2(e),(f)]
correspond to this mode in phase space.

3. The bifurcation diagram [γ, ε2] in fig.2 illustrates
possible modes of the behavior of system (1) in the
in-phased synchronous case. System (1) has a single
attractor in the parameter domain D0 - an equilib-
rium state O1(ϕ

∗

1
= arcsin(γ/(1+b−bκ1−κ2))). The

attractor O1 corresponds to the global synchronous
regime of the coupled PLLs. There is one more at-
tractor in the parameter domain D1 - a rotatory limit
cycle L1 [Fig.2]. The attractor L1 corresponds to the
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Figure 3: The bifurcation diagram (a) of system (1) for
ε2 = 1 and examples of the attractors for γ =
0.1(b), 0.52(c), 0.39(d), 0.35(f), 0.135(f), 0.7(g).

nonsynchronous regime. System (1) has no equilib-
rium states in the parameter domain D2, so the non-
synchronous regime is globally stable here. For the
values of the parameters from domain D3, a single
oscillatory attractor L0 [Fig.2(b)] exists in the phase
space of system (1). Line 1 corresponds to changing
the stability of the equilibrium state O1. The pa-
rameter domain D4 is a bistability domain because
of the existence of two attractors: the rotatory limit
cycle L1 and the oscillatory limit cycle L0. The limit
cycle L0 is doubled in the domain D5. As a result,
the limit cycle L2

0
takes place here . The attractor

L1 may be either regular [Fig.2(a)] or chaotic one
[Fig.2(e)]. An attractor chaotisation results from the
sequence of period doubling bifurcations. The evolu-
tion of the attractor L1 is shown in the bifurcation di-
agram (fig.3). The domain of the existence of chaotic
attractors is typically intermitted by the ”windows”
of multi-turn limit cycles, which are transformed into
the chaotic attractors again with a slight change in
γ.

4. The bifurcation diagram for the antiphased syn-
chronous regime is presented in [Fig.4(a)]. In this
case there are some new effects beside the in-phased
synchronous regime. First, in the parameter domain
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Figure 4: The bifurcation diagram and phase portraits of system (1) for b = 1.5, κ1 = 3.2, κ2 = −0.5, ε1 = 15

D9 the complex oscillatory limit cycle is occurred.
Changing of the amplitude of this cycle is larger than
2π [Fig.4(a)]. Second, in the parameter domains D10
and D11 the existence of two limit cycles is exposed,
and one of them may be chaotic [Fig.4(c)].

5. In the present part the dynamics of a ring of
three PLLs with zero-order filters in the control loop
is considered. The mathematical equation for such
an ensemble is written as follows:

dϕ1

dτ
= γ1 − (1 − κ1) sin ϕ1 − κ2 sinϕ2 −

−b3 sin(ϕ1 + ϕ2) (3)

dϕ2

dτ
= γ2 − (b2 − κ2) sin ϕ2 + sinϕ1 +

+κ3 sin(ϕ1 + ϕ2)

Here, ϕ1 - current phase difference between the first
and the second partial generators, ϕ2 - current phase
difference between the second and the third partial
generators b2,3 - parameters of the partial systems,
κ1,2,3 - parameters of the connections, γ1,2 - is a devi-
ation of the frequency between neighbouring genera-
tors. System (3) has been defined on the phase torus
U∗={ϕ1(mod2π), ϕ2(mod2π)}, so quasi-syncronous
regime will be defined by oscillatory and rotatory
limit cycles.

The dynamical system (3) has no equilibrium states
in the parameter domain D2, so the nonsynchronous
regime is globally stable here. Curve 1 corresponds
to the birth of two equilibrium states: O1 - stable
or unstable equilibrium state and saddle O2. Curve
4 corresponds to the loss of stability of equilibrium
state O1, so in the parameter domain DS

O1
a stable

oscillatory limit cycle exists and in the parameter
domain DU

O1
an unstable oscillatory limit cycle ex-

ists. Curve 2 and 3 corresponds to the birth of two
more equilibrium states: stable or unstable equilib-
rium state O3, saddle O4 (curve 2) and stable or
unstable equilibrium state O5, saddle O6 (curve 3).
Changing of stability of equilibrium state O3 results
to the soft onset of the one more stable oscillatory
limit cycle, which takes place in the parameter do-
main DS

O3
. Similary, unstable limit cycle exists in the

parameter domain DU
O5

. Curve 5 is a border of the
existence of a rotatory limit cycle. In the parameter
domain DS

L1,0
there is a stable rotatory limit cycle

with the ϕ1 coordinate rotation, and in the param-
eter domain DS

L0,−1
there is a stable rotatory limit

cycle with the ϕ2 coordinate rotation. They corre-
sponds to the quasi-synchronous regime, as we said.
In the other parameter domains rotatory limit cy-
cles with different number of rotation exist. They
correspond to the regular beats regime.

6. In this article we have studied small rings of
PLLs with low-order filter in the control loops. We



Figure 5: The bifurcation diagram of system (3) for γ1 = 0.5;κ2 = 0.9;κ3 = 1.1

have received the following results: first, the collec-
tive dynamics of PLLs is described by the follow-
ing variety of the dynamical regimes - synchronous
regime, quasi-synchronous regime , chaotic or regu-
lar beats and complex regular regimes. Second, in
the ring of two PLLs two synchronous regimes exist:
in-phased synchronous regime and antiphased syn-
chronous regime. They are defined by stability of
the equilibrium states O1 and O2. It has been es-
tablished that even in the ring of three same PLLs
with zero-order filters in the control loops quasi-
synchronous, various bistability and beats regimes
may be appeared.
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