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Abstract: Linear matrix inequality based techniques, most often used for robust
analysis of linear systems, are applied to the stability analysis of periodic
equilibrium trajectories of nonlinear systems. Results are derived by linear-
fractional representation of the nonlinearities and taking into account parametric
uncertainties in the same time. Numerically exploitable formulas are obtained by
discretization. An academic example illustrates the entire methodology.
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1. INTRODUCTION

Stability analysis of nonlinear systems is a wide
and important field of research. Among many, the
fundamental results by Lyapunov indicate that a
first analysis of the linearized model gives an infor-
mation on local stability which needs in a second
step to be characterized in terms of stable ini-
tial conditions. Following this close-to-equilibrium
strategy many results have been derived inspired
from robustness conditions for linear systems. The
key idea is then to include the nonlinear system in
some linear representation with uncertainties that
include both nonlinear terms and other modeling
uncertainties. The ’size’ of the uncertainties is
then a representative of the stable state domain.
Among such modeling techniques one can cite
the polytopic differential inclusions of (Boyd et
al., 1994), linear-fractional representations (LFR)
as in (El Ghaoui and Scorletti, 1996) or descrip-
tor type representations with auxiliary state in
(Coutinho et al., 2002). In the paper, LFR mod-
eling is adopted.

Most results inspired from robust analysis of
linear systems consider the case of equilibrium
points. The aim of the paper is to illustrate how
this methodology extends as well for the case of
periodic stable trajectories. As said in (Bittanti
and Colaneri, 2007), many processes are required
to follow some periodic trajectory and this in-
duces periodic models for linear or quasi-linear
approaches. In such a case, at the difference with
equilibrium point analysis, the LFR techniques
and the related Linear Matrix Inequality (LMI)
formulas cannot be applied directly to the ob-
tained periodic continuous-time models. Indeed,
(Farges, 2006), the time-varying characteristics
need to be at some point discretized to formulate
finite-dimentional problems. Similarly to (Kim et
al., 2006), the adopted discretization of the peri-
odic continuous-time LFR is performed with an
artificial sampling of the exogenous LFR signals.
But at the difference of this last results, the dis-
cretization is done in a first-order hold manner
following the example of (Imbert, 2001) which
makes the results less conservative.



The paper is organized as follows. First the
discrete-time periodic LFR modeling is defined.
In section 3 the stability analysis results are then
formulated. They are all LMI-based and inspired
from quadratic separation type of results (Iwasaki
and Hara, 1998; Peaucelle et al., 2007; Scherer,
2005). Finally, a section is devoted to an illustra-
tive academic example and some conclusions are
given.

Notations: AT is the transpose of the matrix
A. 1 and 0 are respectively the identity and
the zero matrices of appropriate dimensions. For
Hermitian matrices, A > (≥)B if and only if A−B
is positive (semi) definite. Subscripts c are used in
some cases to differentiate continuous-time signals
xc(t) from their discrete-time sampled value x(k).

2. PERIODIC LFR FOR PERIODIC
TRAJECTORIES

2.1 LFT-modeling of linearized systems around a
periodic trajectory

Let a continuous-time non-linear system described
by the differential equation η̇(t) = f(η(t), ν(t))
and assume a T -periodic solution ηs(t) of the
system driven by a given T -periodic control law
νs(t + T ) = νs(t)

η̇s(t) = f(ηs(t), νs(t)) , ηs(t + T ) = ηs(t) ∀t ≥ 0 .

Choosing xc = ηs−η and uc = νs−ν, a linearized
model of the system around the periodic trajec-
tory is defined as ẋc(t) ' Ac(t)xc(t) + Bc(t)uc(t)
where [Ac(t) Bc(t)] = Jf (ηs(t), νs(t)) is the Ja-
cobian of f along the periodic trajectory. This
linearized model is continuous-time T -periodic.
Not to neglect totally the non-linear terms of the
differential equation, assume there exists a near
linear formulation of the form

ẋc(t) = Ac(t)xc(t) + Bc(t)uc(t) + Bc
Ω(t)wc

Ω(t)

where the additional term

wc
Ω(t) = Ωc

rat(x(t))(Cc
Ω(t)xc(t) + Dc

Ωu(t)uc(t))

is a rational function of state dependent coeffi-
cients gathered in a matrix Ωc(x(t)):

Ωc
rat(x(t)) = Ωc(x(t))(1−Dc

ΩΩ(t)Ωc(x(t)))−1 .

This rational expression of the model is assumed
be such that Ωc is bounded if xc is bounded
and the assumptions concerning this property are
specified precisely in the following. Note that such
rational modeling may be exact, especially in case
f is a rational function of the state. The case of
polynomial non-linear functions is illustrated on

the numerical example in the last section of the
paper.

At this stage the non-linear model is described
at the vicinity of the periodic trajectory ηs as a
Linear-Frational Representation (LFR)

ẋc(t) = Ac(t)xc(t) + Bc
Ω(t)wc

Ω(t) + Bc(t)uc(t)
zc
Ω(t) = Cc

Ω(t)xc(t) + Dc
ΩΩ(t)wc

Ω(t) + Dc
Ωuuc(t)

wc
Ω(t) = Ωc(x(t))zc

Ω(t) .

The system parameters which are gathered in the
matrices Ac, Bc

Ω, Cc
Ω and Dc

ΩΩ may not be known
exactly or may vary slowly (aging). To take these
uncertainties (assumed constant) into account the
model is enriched in the following way ẋc(t)

zc
∆(t)

zc
Ω(t)

 = M c(t)


xc(t)
wc

∆(t)
wc

Ω(t)
uc(t)


wc

∆(t) = ∆zc
∆(t) , wc

Ω(t) = Ωc(x(t))zc
Ω(t)

(1)

where ∆ is a matrix that gathers all uncertain
parameters and where the matrix defining the
system parameters is T -periodic M c(t + T ) =
M c(t) and partitioned as

M c(t) =

 Ac(t) Bc
∆(t) Bc

Ω(t) Bc(t)
Cc

∆(t) Dc
∆∆(t) Dc

∆Ω(t) Dc
∆u(t)

Cc
Ω(t) Dc

Ω∆(t) Dc
ΩΩ(t) Dc

Ωu(t)

 .

This modeling is always possible if the uncertain
parameters enter the model as rational functions.
For the sake of clarity of presentation a simple
case with one scalar uncertainty is assumed:

∆ = δ1r , δ ≤ δ ≤ δ . (2)

More elaborated uncertainty matrices ∆ can be
considered following for example the methodolo-
gies given in (Iwasaki and Hara, 1998; Scherer,
2005).

2.2 Sampled discrete-time periodic model

We are interested at this stage to give a discrete-
time version of this model. More precisely, the sys-
tem is assumed to be controlled via a discrete-time
calculator with a T -periodic sampling strategy
defined by the N -periodic sequence {Ts(k)}k≥0

such that

Ts(N) = T , Ts(k + N) = Ts(k) .

One such sampling strategy can be uniformly
spaced over the period T of the system (Ts(k) =
kT/N). An other strategy may be to sample thin-
ner at the time intervals when the model pa-
rameters vary faster. Such situation is for exam-
ple appropriate for satellite orbit control where,



in case of elliptic orbits, the model parameters
evolve faster when the satellite is closer to the
earth, (Farges, 2006; Farges et al., 2007; Theron
et al., 2007).

Input digital-to-analog conversion is modeled as
a zero-order hold operator (uc(t) = uc(Ts(k))
on each interval [Ts(k), Ts(k + 1)]) and output
analog-to-digital conversion is a sampler. To de-
fine the discretized model define the following
vectors

x(k) = xc(Ts(k)) , w̃?(k) = wc
?(Ts(k))

z̃?(k) = zc
?(Ts(k)) , u(k) = uc(Ts(k))

where ? is among {∆,Ω}. Moreover, let the fol-
lowing assumptions, all related to the hypothesis
of a sufficiently fast sampling with respect to the
system dynamics.

Assumptions 1. The model parameters are ap-
proximated as constant and equal to their median
value on the intervals t ∈ [Ts(k), Ts(k + 1)]:

M(t) ' M̃(k) = M c(0.5(Ts(k) + Ts(k + 1)))

with the appropriate partitioning

M̃(k) =

 Ã(k) B̃∆(k) B̃Ω(k) B̃(k)
C̃∆(k) D̃∆∆(k) D̃∆Ω(k) D̃∆u(k)
C̃Ω(k) D̃Ω∆(k) D̃ΩΩ(k) D̃Ωu(k)

 .

Assumptions 2. The exogenous signals are ap-
proximated on each sampling interval in a first-
order hold manner:

wc
?(t)

' w̃?(k) +
t− Ts(k)

Ts(k + 1)− Ts(k)
(w̃?(k + 1)− w̃?(k))

for ? among {∆,Ω}, t ∈ [Ts(k), Ts(k + 1)].

This last assumption follows the methodology
proposed in (Imbert, 2001). It happens to be less
conservative than zero-order hold discretization
adopted in (Kim et al., 2006; Ma and Iglesias,
2002). The disadvantage is the necessity to have
some knowledge on the future sampled signals at
time Ts(k + 1). The sampling method therefore
conduces to the next assumption.

Assumptions 3. There exist two scalars q > 0,
β > 1, an N -periodic sequence of matrices Q(k)
and an N -periodic sequence of sets Ξγ(k) such
that if the initial conditions at the sample of time
Ts(k) satisfy the quadratic constraint

xT (k)Q(k)x(k) ≤ q (3)

then for any elements Ξ(k) ∈ Ξq(k) and Ξ̂(k) ∈
Ξβq(k), the matrices Ω(x(k)) and Ω(x(k + 1))
satisfy the quadratic constraints:

[
1

Ω(x(k))

]T

Ξ(k)
[

1
Ω(x(k))

]
≤ 0[

1
Ω(x(k + 1))

]T

Ξ̂(k)
[

1
Ω(x(k + 1))

]
≤ 0

(4)

The sets Ξγ(k) are supposed to be described by
LMIs.

The matrices Ξ(k) are basically defined to de-
scribe in a quadratic fashion the sets where lie
the matrices Ω(x(k)) if x(k) lies in an ellipsoid
(3). Ξ̂(k) describe identically the sets where are
expected to lie the matrices Ω(x(k + 1)), that
is at the following sample of time. As there is
no possibility at this stage to guarantee that the
states did not diverge between the two samples
of time, the assumption is that the states do not
escape from the origin by more than a factor β.

Based on the three assumptions one can integrate
quite easily the differential equations. To do so
define the notations A(k) = eÃ(k)(Ts(k+1)−Ts(k)),

A1(k) =

Ts(k+1)∫
Ts(k)

eÃ(k)τdτ ,

A2(k) =

Ts(k+1)∫
Ts(k)

t− Ts(k + 1)
Ts(k + 1)− Ts(k)

eÃ(k)τdτ ,

A3(k) = A2(k) − A1(k), B(k) = A1(k)B̃(k) and
for ? and � chosen among {∆,Ω} define

B?(k) =
[
A2(k) A3(k)

]
B̃?(k) ,

C�(k) =
[

C̃�(k)
C̃�(k + 1)A(k)

]
,

D�?(k)

=
[

D̃�?(k) 0

0 D̃�?(k + 1)

]
+

[
0

C̃�(k + 1)

]
B?(k) ,

w?(k) =
(

w̃?(k)
w̃?(k + 1)

)
, z?(k) =

(
z̃?(k)

z̃?(k + 1)

)
.

With these notations and assumptions, the sam-
pled system is such that x(k + 1)

z∆(k)
zΩ(k)

 = M(k)


x(k)

w∆(k)
wΩ(k)
u(k)


w∆(k) =

[
∆ 0
0 ∆

]
z∆(k) = δ12rz∆(k)

wΩ(k) =
[

Ω(x(k)) 0
0 Ω(x(k + 1))

]
zΩ(k)

(5)

where M(k + N) = M(k) is the N -periodic
sequence of the model parameters partitioned as

M(k) =

 A(k) B∆(k) BΩ(k) B(k)
C∆(k) D∆∆(k) D∆Ω(k) D∆u(k)
CΩ(k) DΩ∆(k) DΩΩ(k) DΩu(k)

 .



3. ROBUST STABILITY ANALYSIS

The N -periodic discrete-time system (5) is un-
certain in LFT form and subject to two types of
uncertainties. The first one is a constant paramet-
ric uncertainty ∆. The second is a time-varying
uncertainty described by a quadratic constraint
(4). Due to the fact that the quadratic constraint
is valid only for bounded values of the state,
stability of the system need to be proved along
with a guarantee that the state remains bounded
in the ellipsoids defined in (3).

According to the ”quadratic separation” termi-
nology of (Iwasaki and Hara, 1998; Peaucelle et
al., 2007), define for each sample k the constraints
on the vertex separator Θ∆(k) with respect to the
uncertainty 12 ⊗∆ = δ12r[

0
12r

]T

Θ∆(k)
[

0
12r

]
≥ 0[

12r

δ12r

]T

Θ∆(k)
[

12r

δ12r

]
≤ 0[

12r

δ12r

]T

Θ∆(k)
[

12r

δ12r

]
≤ 0 .

(6)

Define as well the constraints on the D-scaling
type separator ΘΩ(k) with respect to the uncer-
tainty diag(Ω(x(k)),Ω(x(k + 1)))

Ξ(k) =
[

Ξ1(k) Ξ2(k)
ΞT

2 (k) Ξ3(k)

]
∈ Ξq(k)

Ξ̂(k) =
[

Ξ̂1(k) Ξ̂2(k)
Ξ̂T

2 (k) Ξ̂3(k)

]
∈ Ξβq(k)

ΘΩ(k) =


Ξ1(k) 0 Ξ2(k) 0

0 Ξ̂1(k) 0 Ξ̂2(k)
ΞT

2 (k) 0 Ξ3(k) 0

0 Ξ̂T
2 (k) 0 Ξ̂3(k)

 .

(7)

Along with the notations

Nx(k) =
[

A(k) B∆(k) BΩ(k)
1 0 0

]
N∆(k) =

[
C∆(k) D∆∆(k) D∆Ω(k)

0 1 0

]
NΩ(k) =

[
CΩ(k) DΩ∆(k) DΩΩ(k)

0 0 1

]
.

Invariant set and asymptotic stability results are
now formulated.

Theorem 1. If there exists a solution Θ∆(k),
ΘΩ(k) such that for all k = 1 . . . N the LMIs (6),
(7) and

NT
x (k)

[
Q(k + 1) 0

0 −Q(k)

]
Nx(k)

< NT
∆(k)Θ∆(k)N∆(k) + NT

Ω (k)ΘΩ(k)NΩ(k)
(8)

hold, then for any initial conditions such that
xT (0)Q(0)x(0) ≤ q the system (5) with zero input

uk = 0 is such that xT (k)Q(k)x(k) ≤ q holds for
all k ≥ 0.

Proof: Let the notations

Υ∆(δ, k) =
[
12r δ12r

]
Θ∆(k)

[
12r

δ12r

]
ΥΩ(Ω,Ξ) =

[
1 ΩT

]
Ξ

[
1
Ω

]

The first constraint in (6) implies that the in-
equality Υ∆(δ, k) ≤ 0 is convex with respect to
δ. The two last constraints in (6) imply that
the inequality holds for the extremal values of δ.
Therefore due to convexity Υ∆(δ, k) ≤ 0 holds for
all δ ∈ [δ δ].

According to Assumption 3 and due to the struc-
ture of Θω(k, q) given in (7), if xT (k)Q(k)x(k) ≤ q
then

ΥΩ(Ω(x(k)),Ξ(k)) ≤ 0

ΥΩ(Ω(x(k + 1)), Ξ̂(k)) ≤ 0 .

Multiply (8) from the left-hand side by the vector(
xT (k) wT

∆(k) wT
Ω(k)

)
and from the right-hand

side by its transpose to get, due to equations (5),

xT (k + 1)Q(k + 1)x(k + 1)
≤ xT (k)Q(k)x(k)
+zT

∆(k)Υ∆(δ, k)z∆(k)
+z̃T

Ω(k)ΥΩ(Ω(x(k)),Ξ(k))z̃Ω(k)
+z̃T

Ω(k + 1)ΥΩ(Ω(x(k + 1)), Ξ̂(k))z̃Ω(k + 1) .

According to the properties of the Υ? terms given
above, if xT (k)Q(k)x(k) ≤ q the last equation
implies xT (k+1)Q(k+1)x(k+1) ≤ q which proves
the theorem by recurrence. �

Theorem 2. If there exists a solution P (k) ≥ 0,
Θ∆(k), ΘΩ(k) such that for all k = 1 . . . N the
LMIs (6), (7) and

NT
x (k)

[
Q̂(k + 1) 0

0 −Q̂(k)

]
Nx(k)

< NT
∆(k)Θ∆(k)N∆(k) + NT

Ω (k)ΘΩ(k, q)NΩ(k)
(9)

hold where Q̂(k) = Q(k) + P (k) > 0 and P (N +
1) = P (1), then for any initial conditions such
that xT (0)(Q(0) + P (N))x(0) ≤ q the system (5)
with zero input uk = 0 is asymptotically stable.

Proof: First note that since P (k) ≥ 0 the condi-
tion xT (k)Q̂(k)x(k) ≤ q implies the boundedness
condition xT (k)Q(k)x(k) ≤ q. Based on the same
methodology as in the proof of Theorem 1, assum-
ing that xT (k)Q(k)x(k) ≤ q implies that

xT (k + 1)Q̂(k + 1)x(k + 1) ≤ xT (k)Q̂(k)x(k) .



The Lyapunov function V (x, k) = xT (k)Q̂(k)x(k)
is positive definite and decreasing along the tra-
jectories of the system thus proving asymptotic
stability. �

4. NUMERICAL EXAMPLE

Let the nonlinear system taken from (Jordan and
Smith, 1987)

η̇1 = η2 , η̇2 = −η1 − (η2
1 + η2

2 − 1)η2

which admits the following periodic solutions pa-
rameterized by the phase φ:

ηs1(t) = cos(t + φ) , ηs2(t) = − sin(t + φ) .

Assuming η1 can be measured and the existence of
a control input on the second differential equation,
consider the modified (controlled) system

η̇1 = η2 , η̇2 = −η1 − (η2
1 + η2

2 − 1)η2

+(κ + δ)(cos(t)− η1(t))

affected by uncertainties δ and which admits a
single periodic solution

ηs1(t) = cos(t) , ηs2(t) = − sin(t) .

Following the methodology exposed in the paper,
this system around the periodic trajectory writes
exactly as

ẋc(t) =
[

0 1
− 1− κ + sin 2t cos 2t− 1

]
xc(t)

+
[

0
− 1

]
wc

∆(t)

+
[

0 0 0 0
− sin t 2 cos t −3 sin t −1

]
wc

Ω(t)

with zc
∆ =

[
1 0

]
xc, zc

Ω = xc, ∆ = δ and

Ωc(xc) =


xc

1 0
xc

2 0
0 xc

2

0 xc2
1 + xc2

2

 .

Define the convex set Ξγ as composed of matrices
with the following structure

Ξ1 = −γ

[
α1 + α4 α2 + α5

α2 + α5 2α3 + α6 + γα7

]

Ξ2 =
[

0 0 0 α2

0 0 0 α3

]
, Ξ3 =


α1 0 0 0
0 α1 + α4 α5 0
0 α5 α6 0
0 0 0 α7


and where the scaling elements satisfy the LMI
constraints:[

α1 α2

α2 2α3

]
≥ 0 ,

[
α4 α5

α5 α6

]
≥ 0 , α7 ≥ 0 .

This set allows to define the properties expected
in Assumption 3: if xcT xc ≤ γ (i.e. for Q = 1) it
is guaranteed that[

1
Ωc(xc)

]T

Ξ
[

1
Ωc(xc)

]
=

(xc2
1 + xc2

2 − γ)
[

α1 α2

α2 2α3

]
+(xc2

2 − γ)
[

α4 α5

α5 α6

]
+((xc2

1 + xc2
2 )2 − γ2)

[
0 0
0 α7

]
≤ 0

Discretization of assumptions 1 and 2 are applied
to the system assuming an uniformly spaced sam-
pling Ts(k) = kT/N , ∀k ≥ 0 where T = 2π,
and choosing N = 20 samples over the period.
The ’control’ gain is chosen at κ = 4.5 with
δ = −δ = 0.5 uncertainty.

Forgetting about the uncertainties ∆ and the
nonlinear terms Ω, the nominal linearized and
sampled system x(k + 1) = A(k)x(k) happens to
be stable. Indeed its monodromy matrix has all
eigenvalues in the unit circle:

λ (A(N = 20) · · ·A(2)A(1)) = { −0.1 , 0.002} .

Assumption 3 is formulated with Q(k) = 1 for all
k ≥ 0 and a dilatation factor of β = 1.5. Theorem
2 is then applied for various values of q. A line-
search procedure allows to find the maximal ad-
missible bound on the initial condition q = 0.056.
For each tested value of q, the computation time
is about 0.7 seconds. The computations were pre-
formed on an PC with Intel Pentium D processor
with 3.00GHz frequency and 1GB memory. The
LMI constraints were declared using YALMIP
(Löfberg, 2004) and solved using the latest version
of SeDuMi (Sturm, 1999) (SeDuMi 1.1 available
at http://sedumi.mcmaster.ca/).

For the maximal attained value q = 0.056, the
LMI problem is solved again while minimizing∑N

k=1 traceP (k). This criterion is chosen as an
heuristic for maximizing the stability domains
xT (k)Q̂(k)x(k) ≤ q. The computation time is
then of 1.4 seconds and the obtained initial condi-
tions for which asymptotic stability is guaranteed
is the ellipse defined by

xT (0)Q̂(0)x(0) =

xT (0)
[

7.5311 0.0545
0.0545 1.2153

]
x(0) ≤ 0.056 = q .

Figure 1 plots in state-space (η1, η2) coordinates
a simulation of the system over one period of time
for δ = 0. The equilibrium circle trajectory is plot-
ted in dashed line. At each instant corresponding
to the sampling (t = kT/N) the position of the
systems state is located using a ’+’ sign, the ellipse
in which the state is guaranteed to lie is plotted



in dashed lines and the circles defined by xT x ≤ q
are plotted in dotted lines. Asymptotic oscillatory
convergence is noticed with less than 0.85% error
at time t = 2π. Other simulations show the same
behavior for other admissible values of δ (not
plotted to keep the figure readable).

Figure 1. Simulation of the non-linear system
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To test the conservatism induced by robustness
with respect to the uncertainty δ, the same tests
are made with δ = δ = 0. In that case the maximal
admissible bound is q = 0.083.

5. CONCLUSIONS

Stability analysis of periodic equilibrium trajec-
tories for nonlinear systems is solved using LMI-
based robustness techniques. Although discretiza-
tion assumptions are introduced and neverthe-
less the inherent conservatism of the LMI results,
the numerical experiments show good promising
results. Future contributions will be devoted to
conservatism reduction.
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