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Abstract: Control moment gyros (CMG) are actuators for agile spadeattitude control. We connect
the problem of moment distribution in CMG with the well-knewcontrol allocation problem in

aircrafts. Using this analogy, we propose a novel momeritilligion algorithm that is based on a
multidimensional interval bisection technique preseittefibre in a different context.
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1. INTRODUCTION mentation (Thieuw and Marcille (2007)). Therefore, altdive
steering algorithms having low algorithmic complexity and

The Control Moment Gyros (CMG) cluster has been studie roved handling of control constraints may be of interest fo
for several decades as a basis for the space vehicles attitédVC control engineers.

and momentum control systems (Wie (2008)). Large spag®espite the problem of CMG steering logic has been studied
stations such as the Mir and the International Space Statigaparately for many years, it has a lot of similarities whk t
utilized CMG as primary actuators. Recently, such a researenore general problem antrol allocation Control allocation
leaded to the first European high-resolution imaging steell js quite useful for control of overactuated systems, andsdea
being controlled by a pyramid cluster of four single-gimiéd!  with distributing the total control demand among the indial
CMG (Thieuw and Marcille (2007)). A renewed practical anchctuators. Using control allocation, the actuator sedectask

theoretical interest arises in developing and analysisMEE  is separated from the regulation task in the control design.
based attitude control systems (see e.g. Lappas et al. 2005

Somov et al. (1999, 2003, 2007); MacKunis et al. (2008):; Bhathe idea of control allocation allows to deal with control

and Tiwari (2006); Davydov et al. (2005): Ignatov and Samnoconstra'ints and actuator faults se_parately from the desfgn
(2007)), especially for small agile satellites. the main regulator, which uses virtual unconstrained cbntr

input. In case of fault, instead of reconfiguring the maintoan
When we have multiple control effectors (such as more thaaw, we change only the distribution of the virtual contrgbit
three CMG, see Fig. 1) producing moments along differerfmong physical actuators.
axes, the control generation problem may not be unique even. i ) i
if we choose a particular control law. The required momemits tThis constrainectontrol allocation problem has been attracting

solve an upper-level control problem can be distributeben  Much attention for more than 15 years since the first algorith
available control effectors in different ways. of this type - the so calledirect allocationapproach (Durham

1993, 1994)). The reason for a new approach to appear thstea
The CMG steering logic, which generates the CMG gimbadf the pseudoinverse solution (proposed initially for eift
rate commands for the commanded spacecraft control torquesntrol as well as for CMG) was its inability to utilize the vlis
is frequently based on the pseudo-inversion of the Jacobiagainable set of solutions, which was proved in these firbt p
matrix (Wie (2008)). Despite its computational simplicity lications. For many years, control allocation has beenistud
suffers from the well-known singularity problem . The pratl  aimost solely within the aeronautical community, but refyen
characterized by excessively large gimbal rates near alsing the idea of control allocation was applied to attitude oointr
state, where rank of the Jacobian decreases (Wie (2008)). Vaf satellites (based on real-time optimization in Pulecahil
ious singularity-robust laws have been proposed to avasl th overa (2007)) as well as control of advanced cars (Tondgl an
problem, including some modifications of the original pseujohansen (2005); Laine and Fredriksson (2008)) and redtinda
doinverse equations as well as using variable-speed CM& (Wobotic manipulators (Altay (2006); Pechev (2008)).
(2008); Lappas et al. (2004); Ford and Hall (2000); Lee et al. . L
(2007): Yoon and Tsiotras (2004); Pechev (2007)). Anothdf@ppears that control allocation principles can help tppse
drawback of the pseudo-inverse solution is that it may né New solution for CMG control with algorithmic complexity
utilize the whole attainable angular momentum rates setgMR "ot exceeding the pseudo-inverse solution. Our solutioR (i
induced by the gimbal rate constraints (see its definitidove ~ ially proposed for aircraft applications in Demenkov (300
Note that in practice it is hard to propose an alternativatsmy ~ 2007)) can utilize the whole attainable momentum rates set,
to the pseudoinverse due to the simplicity of its on-boanalém which may be very important for the agility of a satellite.€Th
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Fig. 1. CMG configuration of the pyramid type (courtesy of t‘@\i
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time qf computation may exceed the pseudp-lnverse approag?g. 2. Control Moment Gyroscope (courtesy of Alkan Altay)
but this time is known in advance. For any given nonzero accu-

racy, the Jacobian and a momentum rates vector, the algoritialways converge to a solution. Therefore, many optimal meth
yields the solution in a finite and known in advance number afds that might be easily applicable and reconfigurableio;|
iterations. like linear or quadratic programming (Bodson (2002); Pciféc
do@nd Lovera (2007)), may not constitute a reasonable enginee
ing solution to the problem (Cameron and Princen (2000)).
ae latest modifications of the direct allocation approded-(
grsen and Bodson (2002)) and methods based on approxima-
Ions or explicit representations of mathematical progreng
sbolutions (Johansen et al. (2005)) are indeed computdifona
effective, but needs (with constantly changing ma#fix)) the
re-computation of a large amount of data, which is possible t
perform only off-line.

To produce correct gimbal rates in the vicinity of a pseu
inverse singularity, the algorithm is applied to both 2D &
problems and the results are compared to detect the corr
dimension. The normal to a 2D plane in the case of reduc
dimension is obtained directly from the solution of the 3DIpr
lem. Nevertheless, a correct momentum rates vector sheuld
supplied by the upper-level logic to pass through a singylar
(if it is possible).

2. LINEAR MODEL In this paper we introduce a new method for CMG steering
logic, which was initially developed for aircraft controlla

Let us suppose that 3-dimensional CMG angular momentug@tion tasks in Demenkov (2005) — a versiongeieralized

vectorh can be obtained as interval bisection Our control allocation algorithm satisfies
h = H(5), @ three criteria:
whered is them-dimensional vector of gimbal angles. (1) guarantee of convergence to a so_lution _
i ivati (2) a known upper bound for time to find a solution
ts time derlvative i : (3) the size of errors can be controlled
h = J(0)3, 2

For any given accuracy, the Jacobidily) and a vector of
) torque rates belonging to the whole attainable torque rates set
Gimbal rates) are supposed to be limited by some maximaR (B), the algorithm yields the solutioé in a finite number
values: of iterations. The complexity of the algorithm is less than
5eB, B= {5 c R™: |5(i)| < 55;3”,@ =1,m}, (3) foroptimization-based methods or direct allocation. Mwes,
during the iterations the volume of the search space dezseas
exponentially and the number of required basic operatiens i

The achievable momentum ratksare then confined to some Proportional to the logarithm of the reciprocal of the acmyr

boundednomentum rates sé¥RS) R, which in general case A control allocator based on this algorithm is thereforeilgas
is a 3-dimensional polytope: adaptable to any changes.ifd).

R(B) = {h:h=J(6),6 € B} 4)
with constantly changing ().

From mathematical viewpoint, the problem of determining L€t us recall the simple idea of the bisection method for a
for a givenh is the root-finding problem, and all allocation function of one variable. Over some interval the function is

algorithms actually differ one from another by the root-firgd known to pass through Zero because it changes sign. Evaluate
the function at the interval’'s midpoint and examine its sign

method. Lo : o .
Use the midpoint to replace whichever limit has the same. sign

The on-board implementation of a control allocation aldoni  After each iteration the bounds containing the root deerégs

for satellites needs to be computationally effective ansligh a factor of two. If after iterations the root is known to be within

whereJ(§) = [J1|J2|...|Jmm] is the Jacobian off (4).

hered(® - i-th component of the vector.

3. INTERVAL BISECTION



an interval of size; = b; — a; (see Fig. 6), then after the next
iteration it will be bracketed within an interval of size

€it1 = €i/2. )
Thus, we know in advance the number of iteratidhsequired
to achieve a given tolerance in the solution:
%%#N%logQ%), (6)
whereeq is the size of the initial intervalA is the desired
ending tolerance.

F(x)

F(a1)

Fig. 4. The idea of our bisection algorithm

g0 = max () . (8)
i=1m

To guarantee the convergence to a solution, we must guarante
that a given vectoh, belongs to the MRS of the initial box. For
this, one can check the vector and replace it by some véctor
lying on the MRS boundary, if it violates the constraintseTh

easiest way to do so is to just scale the gifigrpreserving its
direction, like in the direct allocation approach (see Big.

Fig. 3. Bisection method for one variable function (cowte |t is possible that botiB; andB; contain the solution. In this
Wikipedia) case, one can apply some optimality criteria to decide which
box will be deleted. For example, we can choose a box that
has inside the previously generated vectoto minimize the
Yistance between two consequently generated rate vectors.

This classical bisection method can be generalized rfor
dimensional problems, and has been extensively studidkin
context of the so callethterval analysigJaulin et al. (2001)).
Nevertheless, in general it is impossible to construct @s-g
eralization in the same way as for the one-dimensional case, 4. COMPUTATIONAL ALGORITHM

because it is hard to prove that the generalized interval in

n dimensions does not contain any solution. The number dhe following result was first used for control allocationrpu
intervals potentially containing a solution is then grogiex- poses in Petersen and Bodson (2000):

ponentially and this restricts the applicability of the egach.  Theorem 1.Any normal vectord of a facet of the polytop®.

In our case, however, it is possible, and the one-dimenkiorig & scaled cross product of some two colunipand.J, taken
version of the algorithm can be generalized in the followindrom the matrixJ(4):

way. Notice that (3) defines a bdXin the Euclidean space™ dD = g@ 56 _ 43) 52)

of all possible gimbal rate vectots In other words, it defines LTk Tk
a subset of the space that is overall bounded by hyperplanes
orthogonal to the axes of coordinates. Suppose that we have a
method to determine if the given vepﬂb'rs inside the attainable 4@ — g0 5@ _ 5@ 50
momentum rates s&(B) for the given boxB. Then we cut i Yk i ko

the boxB into two boxesB; andB- by half-splitting it along

the coordinate direction, in whicB is longest. We check each Note that for any facet normal vectdithere exists its opposite
box for the ability to generate the given vector, repl&®y in sign vector—d, which is defined as the normal vector of the
one of the two new boxes that hasn its MRS, and repeat the opposite facet. Because of this, our polytope is a symmetric
procedure, constructing the diminishing sequence of boxes one.

4@ = 1O 0 _ 0 5O,

B By, if h € R1 = R(B1); ) Suppose that we have all columns.Bfd) in a list and deter-
B,, if h € Ry = R(By). mine all pairs of one columd; and any other column from the
list; the number of such pairsis — 1 and any pair gives us two
After m steps of this procedure, we will have the longest facetalid facets of the polytope. In the next step, we have to r&mo
of B two times less than for the original box. So, if we specifithis column (/;) from the list and repeat the procedure (now the
in the same way some tolerancefor the longest facet of the number of pairs isn — 2). Proceed the same way until we have
box, we will obtain the solution iiVm bisection steps, where at least two columns. The maximum number of fadgjsand
N is given by (6) if we treat, as the length of the longest facettherefore the complexity of the facet determination proced
of the initial box: is given by the next equation:



m It can be seen in Fig. 5 how this system defines the MRS. Here
Ny = 2Z(m —1). d; is a true normal vector to a facet, whilg is redundant for
i=1 the representation (but its presence does not affect it).

It is clear thatN; < 2m? and the complexity is at least Note that during bisection process the bBxbecome non-
polynomial. Generally, in the case of several identicabg@ied Symmetric, nevertheless we can always compute its centre an
by a factor) columns in the matrix(¢) the number of facets is apply the same procedure to the centered box.

less thanV; because different couples produce normal VeCtorg, 4y0id the singularity problem (when it is possible), oae ¢
in the same direction in space. compute the solution for both 2D and 3D case and then choose

If we compute vectors,, for all possible non-degenerate com-0ne that gives the closest match. with the supplied momentum
binations of two columns of matri¥(§), we can be sure that rates vector. Inthe case of near-singular solution, allwwis of

we have caught all directions perpendicular to MRS facdis. T the Jacobian matrix span a 2D plane. The nonrtal this plane
particular magnitude of these vectors is not important far o can be obtained from the cross product of any two columns
procedure (i.e. we do not need to normalize them first). of J(§). The required outpuk as well as all columns can be
rojected onto this plane using the pseudoinverse solatioh

It is possible that our Jacobian leads not to 3-dimension . e :
but 2-dimensional MRS. In this case, it is still possible tc{[Le problem can be solved by running similar algorithm for 2D

find directionsdy, in the plane (see Demenkov (2008) for thecase. Ifh lies outside the plane, the solution gives us the closest
particular details). vector in the least-squares sense.

Let us imagine that the normal vect@r is computed and

we have chosen one columh,. Then, to built orthogonal
Toordinate system in the plane, we can compute cross product

c of p and J. Let us form the matrixA = [c Ji]. Now, the

Assume that we want to maximize a linear functigv, over
the whole MRS induced by the given box of gimbal rate
constraint$:

distB,dy,) = max djh. (9) projection operator is given by the well-known Moore-Pesgro
h€R(B) formula:
The maximization over vectorscan be easily replaced by the P=(ATA)71AT,
maximization over gimbal rates: and the projected output and Jacobian matrix in the plane

] m o coordinate system are given B4 and P.J(9).
dist(B, d) = maxdf J(8)6 = max Y _di J;0™,  (10)
5eB

9€B ;37 5. NUMERICAL EXAMPLE
and we can maximize this sum by maximizing each of the ) .
summands separately: Consider a pyramid type CMG where four actuators are con-
m strained to the gimbal on the faces of a pyramid (see Fig. 1).
dist(B, dy,) = Z d{Jisign(dfji)Sﬁ,’gm. (11) The Jacobian in this case become (Wie (2008)) as follows:
Pt - —cos(B)cos(d1) sin(da) cos(B)cos(d3) ...
J(0) = —sin(dy)  —cos(B)cos(dz)  sin(dsz) ..
Let us formally construct thindicator function/z (i), which sin(B)cos(d1)  sin(B)cos(02) sin(B)cos(d3) ...
is TRU E if vector i belongs to the MRS for the given bdx —sin(d4)
or FALSE otherwise. Thedz(h) = TRUE if and only if & cos(3)cos(d4) ] ,
satisfies the following system of linear inequalities: sin(3)cos(d4)
dTh < dist(B,dy), k=1,M whereg is the skew angle.
—dkT.h < dist(B, —dg), k = l,M} (12) An example with skew angle of 53.13 deg and constant unit

momentum magnitude for each CMG are taken from Lee et al.
(2007). Initial gimbal angles are given by= [90° 0 —90° 0]%".
In this case, the rank of the Jacobian matrix is two and the
singularity problem arises. The Jacobian matrix is as fato

0 0 0 0

J(6) = [—1 0.6 —1 0.6]

0 08 0 038
The singular layout of CMG cannot produce any momentum
d along the X-axis direction. The required output is assunted a
h=1[010]T and|5{.| < 1 for all 4.

Due to the singularity, the solution computed by 3D alganith

- df h'<=dist(B, - d) gives us quite different output from the required one. The
solutioné for 2D problemPh = P.J ()0 is defined in the plane
with the normal vectop = [1 0 0] and

-1 —-0.6 —1 0.6

0O 08 0 08]"

dT h'<=dist(B, d)

/

The attainable momentum rates set

Ph=1[10], PJ(5) =

) . ) » After 32 bisections of the initial control box, we have obtd
Fig. 5. MRS represented by a set of linear inequalities. the following enclosing box for the final solution:
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