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Abstract—In this work a procedure to qualitative long-
term prediction of limit sets of a convection-loop system
is presented. The procedure employs estimation of system
parameters of a previously defined process structure
with time-varying coefficients and an interpolator to
track in advance the path of the parameter vector on a
basin of stationary limit sets. Numeric simulations with
a convection-loop system illustrate the features of the
approach.

I. INTRODUCTION
The dynamics of a thermal convection loop

heated from below and cooled from above is
investigated widely for control purposes in the
literature (see for instance [1]). This is represented
by three equations similar to the celebrated Lorenz
equations employed as a general model to local
weather predictions [2]. Roughly speaking, when
the Rayleigh number increases, i.e., the heat from
below increases, the loop dynamics exhibits a
diversity of transitions from a no-motion state
to uniform convection and finally to chaos. The
last transition occurs through a subcritical Hopf
bifurcation.
Behavior prediction is an important task re-

lated to monitoring, supervision and diagnostics
for control purposes. Predictions of the system
behavior from time sequences can be generally
possible when certain periodicity conditions are
fulfilled. When transitions occur from one state
to another one, a more complex time-varying dy-
namics takes place. In this situation predictions
are more difficult due to permanent change in the
system parameters and/or structure. Assuming a
fixed model structure, the prediction is based on
certain estimations of the physical parameters at
any time point.
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Due to the presence of chaotic states in the tran-
sition, one is generally more interested to define
what kind of qualitative state is being travelled by
the dynamics path in the parameter space and if
from this point in advance, a prediction is possible
to next qualitative states, quantifying also how long
they should remain in time. In this way, slow state
transition can be interpreted as a successive change
of stationary limit sets, from which a qualitative
prediction of the behavior is possible.
This paper is concerned with the identification

of qualitative long-term tendencies of the system
behavior drawn out from tracking of estimated pa-
rameter trajectories over a dimensional bifurcation
diagram of the system, which is constructed a-
priori using Ljapunov spectra. To this end a time-
varying model of the convection loop is proposed
and a strategy for prediction is developed.
The interaction among temperature gradients

points situated on and at both sides of the torus,
points situated up and down, and the flow rate
of a viscous fluid inside, is emulated by a mod-
ified Lorenz-like equation set. The problem that
arrives in the identification when signals are not
sufficiently informative, is dealt in the context
of the bifurcation diagram and classes of limit
sets on a basin. To this end, on-line parameter
estimation can provide advantages beside other
techniques with statistical background, mainly if
physical structural models are available. Numeri-
cal simulations will illustrate the features of our
approach.

II. THERMAL CONVECTION LOOP
The thermal convection loop consists of a circu-

lar pipe standing in a vertical plane and containing
viscous fluid. The fluid particles in motion can
be tracked by means of a bead as shown in an
implementation depicted in Fig. 1, which has low
inertia and a similar density to the one of the



fluid at every temperature. One particularity of the
system is that the heat rate Q over the entire loop
is zero.
Regarding the information in Fig. 1, let the state

vector be x = (x, y, z)T with x = u, y = Tw(0)−
Tw(π) and z = Tw(π/2)−Tw(π3/2), where Tw(θ)
is the wall temperature at a angle position θ. Thus
the proposed dynamics equations are

ẋ = σ(t)(−x+ y)
ẏ = β(t)x− αy(t)y − γ

v
(t)xz

ż = −αz(t)z + γ
h
(t)xy − r(t),

(1)

where σ is the Prandtl number and r the Rayleigh
number.
For the stationary system with σ positive and

0 < r ≤ 1 the system has one globally at-
tracting equilibrium (0, 0,−r)T that corresponds
to the no-motion state of the thermal convection.
For r > 1 two equilibria appear that represent
the states of the steady convection. They are re-
spectively: x∗ = y∗= ±√r − 1, z∗ = −1. At
r = σ (σ + 4) / (σ − 2) the equilibria loose their
stability and appear a Hopf bifurcation [3], and for
greater values of r the system has no more equilib-
rium points [4]. Finally, the coefficient β defines
the linear interaction of the flow over the tempera-
ture gradient horizontally. In many approaches the
gains are considered γ

v
= γ

h
= αy = 1 while r, β

and αz are more changeable within large ranges.
It is worth noticing that model (1) has a Lorenz-
similar structure with time-varying parameters.

Figure 1-Thermal convection loop
III. PREDICTOR

Our basic approach is illustrated in Fig. 2.
The prediction problem is posed basically as a

parameter identification problem of a time-variant
system. It consists in the on-line estimation of a set
of physical parameters of the model (1) with data
being provided from the behavior during a state
transition. In this form the estimated parameter
trajectory can be superposed in a basin of such
parameters.
It is then aimed that predictions of the path for

the immediate time in advance can be plotted in the
same basin. In this way, path crossings of the con-
tours of limit sets help to detect qualitative states
of the system. The key idea is to use a model for
the time-dependency of each parameter in such a
way that a prediction of the future evolution of the
path be possible. So qualitative behavior changes
can be detected and assigned in a true time scale
with certain precision. Furthermore, it is supposed
that the parameter change sufficiently slow so as to
endorse the hypothesis of stationarity of the basin
and that the domains of attractions for the basin
are sufficiently extensive so as to guarantee that
trajectories enter them when travelling over the
diverse basin regions.
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Figure 2 - Prediction of parameter path in a basin
Let us suppose a time-varying processes with

coefficients that change slowly in the time t ∈
[t0, t1] so that its temporal behavior can be capture
in a immediate time by

p̂i(t) = θ̂i0 + θ̂i1 t+ ...+ θ̂int
n, (2)

with p̂i ∈ {σ, β, αy, γv, γh, αz, r} and θ̂ij will be
assumed constant within [t0, t1] and the φi’s are
the regressors constructed with the signals and
time-dependent parameter laws. A normalization is
applied for maintained the regressors Lebesgue-∞



measurable by means of ϕi(t) =
1√

1+φTi φi
φi(t).

Also special filters are applied in order to eliminate
the need to measure derivatives [5]. Thus the
normalized estimation error results in

εi(t) =
−
v
θiφiq

1 + φT
i φi

+
ηiq

1 + φT
i φi

(3)

with
v
θi the parameter error vector and ηi a

bounded vector. Finally, the parameter estimation
is implemented as a gradient-based adaptive law
by the ODE

.

θ̂i(t)=Γi
εi(t)¡

1 + φT
i φi

¢φi(t), (4)

where Γi = ΓTi > 0 is a gain matrix influencing
the rate of convergence of θ̂. The trajectories of the
estimated vectors θ̂i are proved to converge inside
a residual set, which measure is of the order of
magnitude of the disturbance ηi/

q
1 + φT

i φi. For
accuracy reasons, the algorithm need to be reset
after each prognosis using the present path point
as initial condition for the next estimation.
As the system has no input, it is stated in

the paper mathematically that the system is able
to generate by self conditions of Persistency of
Excitation (PE) provided some requirements are
satisfied. These are for any regressor

σ1I ≥
Z t+T

t

φi diag(
1

1+φ2i1
,...,

1

1+φ2in
)φT

i dτ ≥ σ2I,

(5)
for t ≥ 0 and T > 0, σ1, σ2 > 0, where σ1 is
known as the level of persistency of φi.
It is proved in the paper that the only way that

any relation in (5) be not satisfied by solutions
of the convection-loop system is that the system
dynamics stays at an equilibrium point. This is the
only condition under which the parameter identi-
fication does not converge, i.e. equivalently, under
which the dynamics does not generate conditions
PE.
So the convection-loop dynamics evolves in a

proper behavior that can range within a wide
spectrum of oscillations from transient to a limit
set, for instance periodic orbits like PN-, PPN-,
PPNN or chaotic states given by strange attractors.

IV. BASINS OF LJAPUNOV SPECTRA
Now we will describe one analytical method for

characterizing qualitative behaviors, that concerns
the Ljapunov spectrum. The exponents of the
Ljapunov spectrum are defined as

)0(
)(log1lim 2

i

i

ti s
ts

t∞→
=λ

(6)

where i = 1, . . . , n, with n being the order of the
dynamic system and si the length of one of the
n principal lengths of an ellipsoid at t in the n-
dimensional phase space of the system, which has
started as an infinitesimal n-sphere of radius si(0)
and changed its form due to the locally deforming
nature of the flow, i.e., in some main directions it
contracts, in others it suffers no change and in the
rest it expands. In [6] an algorithm for detecting
main directions and ortho-normalization of them
via the Grandt-Schmidt method is presented.
The signs of the Ljapunov exponents provide

a quantitative scenario of the system dynamics
and will be used in further analysis. In the con-
text of extended Lorenz-like dynamic systems,
a three-dimensional continuous dissipative system
like this, is described by the Ljapunov spectrum
composed by the following possible combination
of exponent signs [6].

Table I – Identification of limit sets

Besides the Ljapunov spectrum, there is another
related indicator that quantifies chaotic behavior on
the basis of information theoretic terms. These also
are very relevant for our approach to behavioral
prediction. This is a measure of the rate at which
system processes create or destroy information that
is useful for behavior prediction. So, the Ljapunov
exponents can be expressed in bits of information
per second or bits per orbit. Accordingly, for a
chaotic Lorenz attractor with coefficients σ = 16.0,



β = 45.92 and αz = 4.0, and r = 0, the maximal
Ljapunov exponent results 2.16, which means 2.16
(bits/sec). The interpretation is as following: if the
initial behavior was established with an accuracy,
for instance, of about one part per million, i.e.,
1/220 (bits); so the next evolution could be not
predicted with so a precision after 20 (bits) / 2.16
(bits/s)=9 (s). After this time, there is an inability
to predict the behavior except to say that the orbit
stays somewhere on the strange attractor.

In Figs. 3 up to 8, different subdivisions of the
space are made. Additionally, while Fig. 3 shows
the region conformed by the Prandtl coefficient σ
versus the Rayleigh number r, the rest depicts the
control space parameter conformed by the gain
β for bead velocity and the Rayleigh number r.
Clearly, the richness in behavioral diversity seen
in the region β vs. r is quite superior to that
obtained in the subspace σ vs. r. Moreover, in
local vicinities of β vs. r, several limit cycles are
obtained, included PPN and NNP orbits.

Figure 3 - Basin of the Prandtl coefficient σ and
the Rayleigh number r

Figure 4 - Basin of the gain β and the Rayleigh
number r

Figure 5 - Basin of the gain β and the Rayleigh
number r

Figure 6 - Basin of the gain β and the Rayleigh
number r

Figure 7 - Basin of the gain β and the Rayleigh
number r

Figure 8 - Basin of the gain β and the Rayleigh
number r



In Fig. 9 the maximal Lyapunov exponent is
plotted. Basically, this indicator is employed as
building-brick to construct the basin of our ap-
proach. Clearly, the diversity is detected with the
sign of this indicator, so that the domain β vs. r
is divided into sub-regions, in where the system
maintains its features of limit set. It is noticing
that the limit sets corresponding to limit cycles
are confined to a segment without area that is
characterized by the Lyapunov exponent equal to
zero for β = 4.5 approximately.

Figure 9 - Plot of the maximal Lyapunov
exponent in the region (r, β)

V. NUMERICAL SIMULATIONS

The approach is illustrated with numerical sim-
ulations. A time-varying convection loop with co-
efficients σ = 10, αy = 1, γv = 1, αz = 8/3,
γh = 1, r = 0 and β(t) = 1 + cos

¡
π
200

t
¢
, and

with initial conditions: x(0) = 14, y(0) = 27 and
z(0) = 78 is considered. In Figs. 10 and 11 the
evolution and the estimated evolution are depicted.
It can be shown that the system dynamics starts
from an equilibrium point at β(0) = 1 and transits
a series of equilibria with a short transitory till
β(12.68) = 24.74 where a Hopf bifurcations and
consequently a strange attractor is formed for the
asymptotic behavior. This chaotic pattern remains
in time induced by a series of strange attractors
up to the arrival in time intervals where stable
orbits with period doubling are inserted from time
to time, for instance for β = 99.65 a PPNPPN-
orbit and for β = 100.5 a PPN-orbit. Up to t =

100[hours] the coefficient β(t) begins to decrease
along the time, passing through the same limit sets
and showing the same qualitative behaviors. At
t = 187.32[hours] the asymptotic dynamics enters
the path through a series of equilibrium points up
to the end of the simulation.
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Figure 10 - Evolution of the system
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Figure 11 - Etimated evolution of the system
In the estimation it is assumed that no co-

efficient is known beforehand. The only time-
varying parameter is β and this is assumed to
have the law β̂(t) = β0 + β1t + β2t

2. Thus the
parameter vectors are built up as: θ̂x = [σ̂]T , θ̂y =h
β̂0, β̂1, β̂2, α̂y, γ̂v

iT
and θ̂z =

£
α̂z, γ̂h, r̂

¤T . The
method of the static normalization is applied with
gains Γx = 10, Γy =diag(103, 102, 10.14, 103, 102)
and Γz =diag(10, 500, 600). .
It is clearly seen that the estimation of the

state variables preserves qualitatively the patterns
of the paths during chaotic behaviors. Moreover,
as predicted by the theory, the presence of stable
equilibrium points cause lack of persistency of
excitation in the intervals [0, 12.68][hours] and
[187.32, 220][hours], i.e., when the dynamics tran-
sits through a series of limiting sets composed by
equilibrium points the convergence fails. Specially
on this last interval, the divergence of the parame-
ters is more marked.
Also it is remarking that far away from t =

200[hours], the prediction of β begins to fail since
a quadratic evolution does not fit a cosinus-shaped
outside one semi-period of it. This would require
at least a third-order approximation of β(t) or the



reset of the estimation as remarked previously.

VI. CONCLUSIONS
In this work a procedure to qualitative long-term

prediction of limit sets of a convection-loop system
is presented. The procedure employs estimation of
system parameters of a previously defined process
structure with time-varying coefficients and an in-
terpolator to track in advance the path of the para-
meter vector on a basin of stationary limit sets. The
estimation algorithm is based on a gradient law
with normalizations in order to provide Lebesgue-
∞ measurable regressors. A necessary condition
for parameter path tracking is the meeting of good
persistent excitation of the system. Accordingly,
the convergence analysis shows that the stability
of the estimation algorithm is ensured in any path
of the dynamics that includes either chaotic or
periodic orbits, but excludes any permanent transit
over equilibria points. Numeric simulations with
a convection-loop system have shown that the
qualitative prediction of the future evolution can
precisely be made with relatively larger antici-
pation in time than in the case done from the
analysis of realizations. Future research is focused
on experimental data on the convection loop.
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