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Summary

The paper is devoted to some general tendencies 
in absolute stability of hydraulic control valves. 
The valves of very different designs and 
functions have some common elements. It allows 
to formulate a problem for some generalized 
valve and to consider the character of stability 
for typical cases. It is shown particularly which
type of valve characteristic is preferable for 
different types of dissipative forces.

 
Key Words

Stability, valves, control, oscillations, damping

1.    Introduction

Hydraulic control systems are applied in vehicles 
very widely. At the same time it is known from 
engineering experience that these systems tend to 
exhibit undesirable pressure oscillations. It is 
usual, that concrete variants of valves are 
checked for instability numerically with some 
simulation programs [Jelali and Kroll, 2003]. 
Hence the following questions arise. 

• If numerical simulation with some 
initial conditions shows no oscillations, 
is it valid also for all initial conditions? 

• If   the numerical simulation shows 
instability of a concrete valve, how 
should be changed its design?

Thus, along with the numerical simulation it is 
important to have a general conception of the
oscillation phenomenon on the base of classical 
analytical methods.

2.   Formulation of Problem

There is a big variety of hydraulic valves
[Handbook of Hydraulic Fluid Technology, 
1999]. Some designs are presented in Fig.1.

The objective of a hydraulic control valve in 
general case is transforming a control force into 
some controlled pressure of oil. How is this 
achieved?

Figure 1. Typical control valves

A piston under the action of the control force 
and the controlled pressure moves and 
overlaps partially or wholly the oil flow 
through a variable control gap. It should 
change the controlled pressure such that the 
piston comes to equilibrium. 
Thus, the valves of very different designs have 
some common elements:
1. Piston is a body with one degree of 
freedom. It has mass m and coordinate x(t). 
2. Working cell is a vessel of oil with the
controlled pressure p. The working cell has 
some compliance or so called hydraulic 
capacity ch
3. Control surface of area A is some surface 
connected with the piston transversal to its 
direction of motion. Through this surface the 
controlled pressure acts on the piston.
4. Control force is a force of any nature 
(hydraulic, magnet, mechanical) that acts on 
the piston against the controlled pressure. We 
denote this force as Ap* in order to introduce 
the target pressure p*
5. There is always some flow of oil from a 
higher pressure source to the working cell 
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(input) and from the working cell to sump
(output) through gaps of variable cross-
section. The difference between  input and 
output flows is denoted as Q. This quantity
depends on the piston coordinate x and 
generally on the pressure p. As a rule, the last 
dependency is weak and we will not take it
into account. The function Q(x) can be called 
characteristic of a valve. It is determined by 
the geometry of the control gaps and may be 
modified with the help of some notches
(Fig.2) 

Figure 2. Notches

6. A spring with stiffness c connects the 
piston with a base.
7. Dissipative forces acting on the piston can 
be classified under three types:

- Viscous damping -Dv
- Coulomb friction - Fsign (v)
- Square resistance - D2v2sign (v)
Here v=dx/dt, und Dv, F, D2 are some 
coefficients. 

The square resistance arises usually due to an 
orifice between the control cell and the control 
surface. The coefficient D2 can be calculated 
as γ (A/Ab)2. Here A und Ab are the areas of 
the control surface and the orifice, γ is a 
constant.

The described generalized valve is 
schematically illustrated in Fig.3 as a 
flowchart for SimulationX

Figure 3. Flowchart for SimulationX

The differential equations corresponding to this 
generalized model can be transformed to the 
following dimensionless form:
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Here the following dimensionless quantities are 
introduced.
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We shall consider as allowed characteristics of 
valve q(ξ) such everywhere continuous functions 
for which q(0)=0, ξ q(ξ)>0 and integrals
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The main question to be answered is the question 
about the absolute stability of the static solution 
ξ=0, P=0

2.   Lurie problem

First we consider the system (1),(2) without 
Coulomb friction  and square resistance (f=k=0)
and try to answer the following question: Is it 
feasible to choose the parameters B and α such
that the absolute stability is provided 
independent on the characteristic of the valve 
q(ξ)?  This question relates to the classical Lurie 
problem of the absolute stability for control
systems with servomotors [Lurie, 1951]. The 
Lurie problem in the canonical form for a system 
of third order
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is considered detailed in [Merkin, 1976]
Here e1, e2, λ1, λ2, r (Re λ1>0, Re λ2>0) are 
parameters to be chosen so that the system has 
absolute stability independent on the allowed 
function q(ξ). 
Solution of this problem is representable as the 
following condition
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In order to apply this result to the system (1), (2)
it is converted to (4) with using the following 
transformation
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where 1λ and 2λ are roots of the equation 
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Thus 4/2Ψ−<Θ and the condition of absolute 
stability (5) is not fulfilled. It means that the 
parameters B and α can not be chosen such that 
the stability takes place at any characteristic of 
valve.

Thus, only a combination of damping, stiffness 
and characteristic of the valve can provide the 
absolute stability. 

3.   Linear characteristic of valve

The simplest analysis of the absolute stability of 
the system (1),(2) (f=k=0) is possible at the 
linear characteristic of a valve:

,)( ξξ ξqq ′= (11)

where ξq′ is a constant.

In this case the following characteristic equation 
of the system is valid

0)1(23 =′++++ ξλαλλ qB (12)

Because of physical feasibility only B>0 and 
1+α >0 are possible. Thus the Routh-Hurwitz
criterion [Merkin, 1976] leads to the inequality

)1( αξ +<′ Bq (13)

This simple condition gives in many practical 
cases a good estimation of parameters that 
provide stability. In dimensional form it looks as 
follows
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There is some damping threshold crD that must 
be exceeded to achieve stability. It is necessary 
either to increase the actual damping vD or to 

decrease the damping threshold crD through the 
following measures:
- decreasing the piston mass,
- increasing the spring rate and the hydraulic 
capacity of the working cell,
- decreasing the slope of the valve characteristic 
Q´(x).

4.   Non-linear characteristic of valve

In view of the previous result a usage of 
triangular notches as in Fig.2 seems to be 
attractive. In this case q´(0)=0 and according to 
the condition (9) the stability in small  is 
guaranteed at any damping. But the absolute
stability in non-linear cases can differ from the 
stability in small.
With the aid of the Lapunov’s functions it can be 
shown [Barbashin, 1970] that for the absolute 
stability an allowed function q(ξ) has to satisfy 
the following condition for all ξ . 

)1()( αξξ +<′ Bq (15)

Thus, the absolute stability in the case of non-
linear characteristic of valve is determined by 
the maximum of the slope q´(ξ) and can not be 



provided at sufficiently small damping even 
when q (́0)=0. 

5.   Non-linear dissipative forces

Let us consider the case of non-linear dissipative
forces that consist of Coulomb friction, square 
resistance and viscous damping. The technique
of harmonic linearization [Panovko and 
Gubanova, 1979; Tondl, 1976] is here most 
suitable. We use it in the following 
interpretation. Let the system (1),(2) be disturbed 
from the equilibrium. Amplitude of its free 
oscillations can increase or decrease, what can be
characterized as local seemingly stability or 
instability (Fig.3). Independent on this the 
oscillations are assumed to be close to some 
harmonic oscillations
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and the behavior of the system is similar to 
behavior of some effective linear system
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that depends on Ω and X.  The closer the system 
to the stability boundary, the more precisely are
these approximations.
This effective system is constructed so that its 
root-mean-square 
deviations
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from the non-linear system (1),(2) are minimal.
The minimizing expressions (18),(19) with
respect to values  0,qq effξ′ and  effB leads to 

the following equations 

0)]()([
2

0
0 =+′−∫

π

ξ θξξξ dqqq eff
(20)

0)]()([
2

0
0 =+′−∫

π

ξ θξξ dqqq eff
(21)

0)]([
2

0

2 =′′′+′+′−′∫
π

θξξξξξξ dsignkfsignBBeff

(22)
It gives

∫ +=′
π

ξ θθθξ
π

2

0
0 sin)sin(1 dXq

X
q eff

(23)

0

2

0
00 )sin(

2
1

ξθθξ
π ξ

π

effqdXqq ′−+= ∫
(24)

B
X

fkXBeff +
Ω

+Ω=
ππ
4

3
8

(25)

The effective equations (17) could also be 
interpreted from standpoint of the concept of 
vibrational mechanics [Blekhman, 2000]  

In order to find the boundary of stability we 
substitute the expressions (16),(23),(24) and (25) 
into equations (17) and balance the terms with 
sinus, cosines and the constant terms. It gives a 
system of 6 equations for 6 unknown values
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It follows that
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It worth noting, that according to (27) the 
frequency has a constant value (1+α ) and does 
not depend on amplitude and damping. The 
expression (28) determines a relationship 



between the mean ξ0 and the amplitude X. The 
equation (29) gives a boundary of stability that 
coincides formally with the boundary of stability 
(13) for the linear system according to the 
Routh-Hurwitz criterion. However, here the left 
and the right parts are functions of X. The 
condition 

)1)(()( αξ +<′ XBXq effeff (30)

defines a region of amplitudes X of free 
oscillations that demonstrates the seemingly 
stability of the equilibrium point (Fig4).
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Figure 4. Seemingly stability (red) and 
instability (blue) of the equilibrium point  

If the equation (29) has no solutions regarding 
X, the system does not change the character of 
stability with X that it has at arbitrarily small 
X. Thus, if the system is stable in small, it is 
desirable that the equation (29) has no roots. 
Then the system is absolutely stable. If the 
instability in small is inevitable, it is desirable 
that the equation (29) has the only solution, 
herewith as small as possible.
Let us consider on the base of the inequality 
(30) the character of stability for two typical 
characteristics of valves that we will call linear 
and square characteristics. These two 
characteristics lead through the harmonic 
linearization corresponding to constant and 
linear functions effqξ′ (X):

1cq eff =′ξ (31)

Xcq eff 2=′ξ (32)
Here c1 and c2 are some constants. 
Such dependencies are typical for rectangular 
und triangular notches (Fig.2). It is of no 
importance whether the function q(ξ) is smooth 
or takes a breaking point at ξ=0 

In Fig.5 the quality diagrams are presented, 
that explain the character of stability for these 
two cases with Coulomb friction, square 
resistance, viscous damping and with a mixed 
dissipation (all types of dissipative forces 
together). 

Figure 5. Character of stability for different 
valves

The effective damping Beff(X) according to 
(25) is shown in bold everywhere. The thin 
lines represent the dependency q´ξeff(X) for the 
regarding cases (31) and (32). The arrows 
correspond to the local direction of the 
amplitude change. The diagrams illustrate the 
following quality tendencies.
1. With only Coulomb friction the system 
is stable in small but not absolute. Both for 
linear and for square characteristic of valve 
some rather big amplitudes of initial free 
oscillations increase with time unlimited.
2. In the case of viscous damping the 
system with the square characteristic of 



valve behaves as in the case of Coulomb 
friction. For the linear characteristic of valve 
either absolute stability or absolute instability
is possible. It depends on the fact whether the 
condition c1<B(1+α ) is fulfilled or not. Thus, 
in the case of viscous damping the linear 
characteristic of valve is preferable.
3. In the case of square resistance, in 
contrast, the square characteristic of valve 
makes it possible either absolute stability or 
absolute instability.  It depends on the fact 
whether the condition 
c2<8/(3π )k(1+α )2

is fulfilled or not. In this case the system with 
linear characteristic of valve is always instable
in small and has seemingly stability at rather 
big amplitudes. It can be practically acceptable, 
if the steady-state amplitude 
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is sufficiently small.
Nevertheless, in the case of square resistance 
the square characteristic of valve is preferable.
4. In the case of mixed dissipation when 
all types of damping take place the absolute 
stability is possible both for linear and for 
square characteristic of valve. It demands 
fulfilling the following conditions:     

- for linear characteristic of valve:
 )1)(3/2/8(1 απ ++< Bfkc (34)  

 -for square characteristic of valve:
 c2<8/(3π )k(1+α )2 (35)

If these conditions are not fulfilled, the system 
is stable in small but not absolute. From some 
level of initial amplitudes the oscillations 
increase. However in the case of linear 
characteristic of the valve amplitudes increase 
only till some steady-state level. The initial 
amplitudes that exceed this level demonstrate 
seemingly stability. Opposite, amplitudes for 
square characteristic of the valve can increase 
unlimited. Therefore, in the case of mixed 
dissipation the linear characteristic of valve
should be preferred.

The described tendencies are confirmed
through numerical simulation and serve as a 
good basis for preliminary estimation of 
parameters and for search of acceptable 
variants in the case of problems with stability.  
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