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Abstract
“Rough” differential equations form a class of control-

affine dynamical systems driven by input signals of a
low regularity, namely, paths of bounded p-variation
(BVp), p > 1.
In this paper, we address impulsive rough control sys-

tems, i.e., rough differential equations driven by dis-
continuous BVp-controls. For the case of scalar con-
trols and p ∈ [1, 2), a constructive representation of the
system’s states is obtained.
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1 Introduction
This study is undertaken towards developing the math-

ematical theory of impulsive control systems with
states of unbounded variation, and appeals to a rela-
tively new and challenging branch of the modern con-
trol theory called the rough paths theory. This control-
theoretical framework, originated in [Lyons, 1994], and
further developed in [Gubinelli, 2004,Dudley and Nor-
vais̆a, 2011, Lejay, 2013, Lyons, 1998, Lyons and Qian,
2002], is, actually, the theory of control differential
equations driven by paths (continuous controls) of class
BVp — introduced by N. Wiener and composed of
functions having bounded p-variation, p ≥ 1, — with
deep roots in differential geometry and a rich algebraic
background. Being in deterministic settings, the the-
ory of rough paths is at the same time closely related to
stochastic control and noisy differential equations by
Îto and Stratonovich.
In this talk, we extend the concept of rough differen-

tial equations to the impulsive control setup by admit-
ting discontinuous controls (and discontinuous states)
of bounded p-variation, p ∈ [1, 2).
Depending on the “order of irregularity” of input sig-

nals, one can mark out three basically different settings

for control-affine dynamical systems.

1.1 The well-studied case p = 1: “Classical” im-
pulsive control by signals of the Jordan’s class
BV

Impulsive control systems, acting over a finite control
period T = [a, b] ⊂ R, are commonly described by
measure differential equations of the sort

dx = f(x) dt+G(x) dw, x(a) = x0, t ∈ T, (1)

where f : Rn → Rn and G : Rn → Rm×n are
given locally Lipschitz continuous vector and matrix
functions; states x : T → Rn and controls w : T →
Rm are (discontinuous) functions of bounded variation
(BV ). Differential forms dx, dw can be treated here
as vector-valued Borel measures induced by respective
functions. For continuous controls, a solution of (1) can
be defined by Lebesgue-Stieltjes or Perron-Stieltjes in-
tegration against a given function w.
A natural way system (1) enters the scene is a tra-

jectory compactification (relaxation) of an ordinary
control-affine system

ẋ = f(x) +G(x) ẇ, x(a) = x0, t ∈ T, (2)

with inputs w ∈ W 1,1(T,Rm), w(a) = 0.1 Such a
compactification is dictated by needs of related optimal
control problems, stated for system (2) under the con-
straint on the total “control action”:

∫
T
|ẇ| dt ≤ M

with a given M > 0. Such variational problems com-
monly appear to be singular in the sense [Gurman,
1997], and, generically, do not have solutions in the
class of ordinary controls. A trajectory compactifica-
tion, thus, requires a weaker topology (compared to the

1The tube of Carathéodory solutions to the Cauchy problem (2)
is not generically closed in the natural topology of uniform conver-
gence, as states can pointwise tend to discontinuous functions.



natural topology of the uniform converges of trajecto-
ries), and implies an extension of the concept of so-
lution to the dynamical system. The topologies, for
which the desired trajectory compactification can be
defined constructively, are: the weak* topology ofBV ,
the topology of pointwise convergence, and the topol-
ogy of graph convergence in the Hausdorff distance.
Compactifications in these topologies lead to gener-
alized solutions of bounded variation and generalized
controls of the type of vector-valued Borel measures
[Arutyunov, Karamzin, and Pereira, 2014, Bressan and
Rampazzo, 1988,Bressan and Rampazzo, 1994,Dykhta
and Samsonyuk, 2000, Dykhta and Samsonyuk, 2015,
Goncharova and Staritsyn, 2015,Goncharova and Star-
itsyn, 2012, Karamzin at al., 2015, Karamzin at al.,
2014, Miller, 1996, Motta and Rampazzo, Miller and
Rubinovich, 2003,Pereira and Silva, 2000,Sesekin and
Zavalishchin, 1997, Silva and Vinter, 1996]).

1.2 The case 1 < p < 2: An extension of Stieltjes
integration due to L.C. Young

For the simplest case of bounded p-variation of con-
tinuous control w, p ∈ (1, 2), the mathematical setup
behind the control theory is, principally, the same as
in the above case p = 1. Equation (1) driven by such
paths can be uniquely solved by Young’s integration:

∫ t

a

g(s) dw(s). (3)

Here, w and g are assumed to have finite p- and q-
variations, respectively, p−1 + q−1 > 1. In fact, (3) is
a Stieltjes integral, which remains well defined due to a
wonderful assertion by L.C. Young [Young, 1936] (see
also [Dudley and Norvais̆a, 1999, Norvais̆a, 2015, Le-
jay, 2013]).

1.3 The threshold case p = 2 and a general setup
for p ≥ 2: Rough paths due to T. Lyons and
M. Gubinelly

For p ≥ 2, an adequate solution concept for differ-
ential equation driven by controls of the class BVp is
much more complicated, and this is the heart of the
rough paths theory. As such, the term “rough path” was
first introduced in [Lyons, 1994]. The basic setup here
is somehow similar to the non-commutative case in im-
pulsive control of measure-driven systems: One can de-
sign the closure of BV ∩C inside BVp∩C, and points
of this closure are said to be rough paths. Next, one
considers a sequence {wk} ⊂ BV ∩ C converging in
a specific metric to a rough path w ∈ BVp ∩ C. Under
certain regularity assumption of input data (say, G may
be γ-Lipschitz with γ > p), one establishes the con-
vergence of the respective states xk of (1) to a function
x ∈ BVp ∩ C, which is named a solution to (1) under
the input w. In this reasoning, it occurs that the defined
state x = x[w], in fact, depends on the choice of an
approximating sequence wk of w; in order to perform a

single-valued selection of the multivalued input-output
mapping w 7→ x, one should enhance control w with
certain extra data. In the rough paths theory, this nec-
essary extra information is provided by a combinatorial
object called the signature of a path or Chen series.

1.4 Impulsive rough differential equation: To-
wards impulsive control with states of un-
bounded variation

Mathematical control theory for systems with trajec-
tories of unbounded variation is, by now, a rather frag-
mentary framework, compared to the BV case.
A major part of studies here are confined within the

simplest cases, when the vector fields, defined by the
columns of the matrix function G, satisfy the well-
known Frobenius commutativity condition, or its gen-
eralization called the involutivity assumption, which
is also very restrictive [Bressan and Rampazzo, 1988,
Dykhta and Samsonyuk, 2000, Gurman, 1997, Sesekin
and Zavalishchin, 1997].
In what concerns the general setup, we should men-

tion the recent paper [Aronna and Rampazzo, 2013],
which establishes the concept of so-called L1-limit so-
lutions to control-affine systems, and raises the idea of
impulsive control with BVp-inputs as a potential try-
out.
In the present paper, we address control dynamical

systems of the form (1) with trajectories x and con-
trol inputs w being (possibly, discontinuous) functions
of the Wiener’s class BVp. We call systems of type (1)
impulsive rough differential equations. The main goals
are: (i) extension of the solution concept of a rough
differential equation to the case of discontinuous con-
trols, and (ii) constructive representation of discontin-
uous states of bounded p-variation by a discontinuous
time reparameterization.
We restrict our consideration to the case p ∈ [1, 2).
For the ease of presentation, we operate with scalar

controls and states, i.e., assume that n = m = 1.
Our approach is based on pointwise approximation

of rough solutions to equation (1) by a sequence of
regular states produced by absolutely continuous in-
puts wk with uniformly bounded p-variation. In other
words, we look at system (1), driven by BVp-controls,
p ∈ [1, 2), as at a certain trajectory relaxation of ordi-
nary control system (2).

2 Functions of bounded p-variation: Definitions,
basic properties and examples

Let p ≥ 1. Following [Wiener, 1924], the total p-
variation of a function g : T → Rk on an interval T is
the quantity Vp(g;T ), defined by

Vp(g;T )
.
=

(
sup
π

N∑
i=1

∣∣∣∣g(ti)− g(ti−1)∣∣∣∣p)1/p

,



where sup is taken over all finite partitions π =
{t0, t1, . . . , tN} of T , a = t0 < t1 < . . . < tN = b.
The value Vp(g;T ) can be infinite. If Vp(g;T ) < ∞,
we say that g is a function of bounded p-variation. The
set of functions T → Rk of bounded p-variation is de-
noted by BVp(T,Rk). It is a Banach space with the
norm ||g||BVp

.
= ||g||L∞ + Vp(g;T ).

Let us recall some basic properties of BVp-functions
[Chistyakov and Galkin, 1998]:

• For any g ∈ BVp(T,Rk), the set of discontinuity
points of g is at most countable, and, for all points
a ≤ s < t ≤ b, there exist one-sided limits

g(t−) .= lim
τ→t−

g(τ), g(s+)
.
= lim
τ→s+

g(τ).

• g ∈ BVp(T,Rk) iff there exists a bounded non-
decreasing function ϕ : T → R, and a Hölder
continuous function h : ϕ(T ) → Rk of exponent
γ = 1/p with the Hölder constant H(g) ≤ 1, such
that g = h ◦ ϕ.

• A generalization of the Helly’s selection prin-
ciple (a compactness theorem for functions of
bounded p-variation): Let K be a compact sub-
set of Rk. Let F be an infinite family of functions
T → K of uniformly bounded p-variation, that is,
sup
g∈F

Vp(g;T ) < ∞. Then there exists a sequence

{gk} ⊆ F converging pointwise on T to a function
g ∈ BVp(T,Rk).

• Any function g ∈ BVp(T,Rk) admits a unique
representation g = gc + gd, where gc is a contin-
uous function called the continuous component of
g, and gd is the sum of jumps of g.

We also cite a basic result for rough differential equa-
tions with BVP -controls, p ∈ [1, 2), [Lejay, 2013].
Let F = (F1, F2, . . . , Fk) be a matrix function Rn →
Rn×k. Consider a control equation

x(t) = x0 +

k∑
i=1

∫ t

a

Fi
(
x(t)

)
dwi(t), t ∈ T, (4)

where w is a continuous function of bounded p-
variation with p ∈ [1, 2).

Theorem 2.1. [Lejay, 2013]. Let F be α-Hölder con-
tinuous with α > p− 1. Then there exists a continuous
function x of bounded p-variation being a solution to
(4). Furthermore, assume that F is bounded and con-
tinuous, and its derivative is bounded and α-Hölder
continuous with α > p − 1. Then the solution x is
unique.

3 Solution concept for impulsive rough differ-
ential equations. Representation of states of
bounded p-variation, p ∈ [1, 2), by a discrete-
continuous integral equation

In what follows, we adopt the following hypotheses:
(H1) The functions f and G are locally Lipschitz con-
tinuous, f is of sublinear growth, and G is bounded on
R, i.e, for any compact Q ⊂ R, there exist constants
Lf,G = Lf,G(Q) such that, for all x1, x2 ∈ Q, it holds

|f(x1)− f(x2)| ≤ Lf |x1 − x2|,

|G(x1)−G(x2)| ≤ LG |x1 − x2|,
(5)

furthermore, there exist constants cf , cG > 0 such that

|f(x)| ≤ cf (1 + |x|), |G(x)| ≤ cG ∀ x ∈ R. (6)

(H2) The derivative Gx is bounded on R, and satisfies
the Hölder condition with exponent α > p− 1.
Given p ≥ 1, consider solutions of system (2)

produced by control inputs w with bounded total p-
variation Vp(w;T ). Let us show that any sequence
of such solutions contains a subsequence converging
pointwise to a function of bounded p-variation.
Consider a control sequence {wk} ⊂ W 1,1(T,R)

with uniformly bounded p-variations, that is, there ex-
ists M > 0 such that

Vp(wk;T ) ≤M

for all k ≥ 1. According to the Helly’s selection prin-
ciple — passing, if necessary, to a subsequence —
we can assume that {wk} is pointwise converging to
a function w ∈ BVp(T ) with w(a) = 0.
Let {xk} be a sequence of Carathéodory solutions to

(2), generated by {wk}. Pointwise limits of {xk} are
said to be generalized solutions of (2).
The following lemma provides the existence of gener-

alized solutions of (2).

Lemma 3.1. Let {wk} ⊂ W 1,1(T,R) be a control se-
quence such that

sup
k≥1

Vp(wk;T ) <∞ (7)

and {xk} be the sequence of the corresponding solu-
tions to differential equation (2). Then,

i) {xk} is uniformly bounded, and there exists a con-
stant K > 0 such that

Vp(xk;T ) ≤ K ∀ k ≥ 1; (8)

ii) There exist a function x ∈ BVp(T,R) with
Vp(x;T ) ≤ K and a subsequence {xkj} ⊆ {xk}
such that xkj (t)→ x(t) for all t ∈ T .



The proof readily follows from applying the so-called
nonlinear Goh’s transform [Dykhta and Samsonyuk,
2000] to (2).
Given p ∈ [1, 2), letWp = Wp(T ) denote the set of

functions w ∈ BVp(T,R), which are right continuous
on (a, b] and satisfy w(a) = 0.2

Let w ∈ Wp. On the interval T , consider the follow-
ing discrete-continuous integral equation: x(a) = x0,

x(t) = x0 +

∫ t

a

f
(
x(ς)

)
dς +

∫ t

a

G
(
x(ς)

)
dwc(ς)

+
∑

s≤t, s∈Sd(w)

(
zs(1)− x(s−)

)
, t ∈ (a, b], (9)

Here,

Sd(w) = {s ∈ T | [w(s)]
.
= w(s)− w(s−) 6= 0}

denotes the set of jump points of w. The integral with
respect the continuous part wc ∈ BVp(T,R) of con-
trol w in the right-hand side of (9) is understood in the
Young’s sense, and the functions zs, s ∈ Sd(w), are
defined as solutions on [0, 1] of the ordinary differen-
tial equations

dzs(τ)

dτ
= G

(
zs(τ)

)
[w(s)], zs(0) = x(s−). (10)

By a solution to impulsive rough differential equation
(2) under a control input w ∈ Wp we mean a right
continuous on (a, b] function x ∈ BVp(T,R) satisfying
discrete-continuous system (9), (10), i.e., it turns (9)
into an identity.

Theorem 3.1. Given p ∈ [1, 2), assume that hypothe-
ses (H1) and (H2) are satisfied. Then the following
assertions hold true.

i) (The existence of a solution): For any w ∈ Wp,
there exists a unique solution x = x[w;x0] ∈
BVp(T,R) of (9).

ii) (Approximation by ordinary control pro-
cesses): For any w ∈ Wp, there exists a sequence{
wk
}
⊂ W 1,1(T,R) of control inputs of system

(2) such that

- there exist positive constantsMw andMx in-
dependent of k and such that Vp(wk;T ) ≤
Mw and Vp(xk;T ) ≤ Mx, where xk

.
=

x[wk;x0];
- xk converges to x at continuity points and at
t = T .

2The assumption of one-sided continuity is technical and does not
imply loss of generality.

The proof is based on the nonlinear Goh’s transform
(described just above), and a special discontinuous time
change [Samsonyuk and Staritsyn, 2017] generaliz-
ing the so-called space-time reparameteization [Miller,
1996, Miller and Rubinovich, 2003, Motta and Ram-
pazzo, Sesekin and Zavalishchin, 1997] to the case of
states with bounded p-variation. Note that, by the dis-
continuous time change, equation (1) is transformed to
an auxiliary rough differential equation with controls
and states being continuous functions of classBVp(R).

4 Conclusion
The paper raises a pretty new and challenging issue of

mathematical control theory: impulsive control of dy-
namical systems driven by signals of unbounded varia-
tion, i.e., of a lower regularity than the familiar class of
impulsive controls represented by Borel measures.
At the present step, we are confined within the sim-

plest case p ∈ [1, 2). A further extension of the im-
pulsive control framework to systems acted by BVp-
controls with p ≥ 2 has to heavily rely on the appa-
ratus of the theory of rough paths, briefly discussed in
Introduction.
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