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ABSTRACT 

The speed-gradient based control algorithm for passing 
through resonance zone for the two-rotor vibration unit 
is proposed. The algorithm is based on speed-gradient 
method and leads to the significant reduction of the 
required level of the controlling torque. The dynamics 
of the overall hybrid system and its robustness against 
changes of spring stiffness, excentricity of rotors and 
damping is analyzed by computer simulation. It is 
shown that taking into account the motor dynamics 
slightly slows down the passage through resonance. 
 
1. INTRODUCTION 

Vibration units with unbalanced (eccentric) rotors are 
widely used in the industry. It is well known that the 
maximum power of driving motor is required during the 
spin-up mode (Blekhman 2000). The decrease of the 
spin-up power leads to decrease of nominal power and, 
therefore to decrease of the weight and the size of the 
motor. In order to obtain the desired mode of vibration 
it is necessary to control the rotor speed in a broad 
range including both pre-resonance and post-resonance 
regions. However, reduction of the motor power for 
systems with several degrees of freedom may increase 
the influence of resonance and lead to appearance of 
Sommerfeld phenomenon and capture (Andrievsky et 
al. 2001; Blekhman 2000). Sommerfeld phenomenon is 
caused by a limited power of motors. It may prevent the 
system from passing through resonance region and 
achieving the desired post-resonance value of rotor 
speed.  It means that the problem of passage through 
resonance arises naturally. It is important for 
development of new generation of vibration equipment 
with improved technological characteristics. However, 
both industrial and laboratory vibration units are 
described by nonlinear models with many degrees of 
freedom and because of their complex dynamics the 
problem is hard to resolve. 
The key idea to reduce the power of the unbalanced 
rotor is to swing the rotor during the spin-up period by 
feedback control. The control algorithms implementing 
this idea were proposed in (Kinsey et al. 1992; Kel'zon 
and Malinin 1992; Malinin and Pervozvanskii 1993; 
Tomchina and Nechaev 1999, Fradkov and Tomchin 
2004). In  (Kel'zon and Malinin 1992) and (Malinin and 
Pervozvanskii 1993) the optimal control method was 
used leading to complicated and not sufficiently robust 
controller. Kinsey et. al. (1992) proposed the algorithm 

based on derivation of the averaged controlled plant 
equation which is labor-consuming.  The algorithms of 
(Tomchina and Nechaev 1999; Fradkov and Tomchin 
2004) are based on the speed-gradient method (Fradkov 
1990; Fradkov et al. 1999) and energy-based goal 
functions. As it was shown in (Fradkov 1996) the 
speed-gradient algorithms for energy control of 
conservative systems allow to achieve an arbitrary 
energy level by means of arbitrarily small level of 
control power (so called swingability property). Using 
this approach for systems with losses allows to spend 
energy only to compensate the losses, and to reduce the 
power of driving motor significantly.  An additional 
requirement of achieving fast passage through the 
resonance zone by electrical correction means is also 
important (Tomchina and Nechaev 1999). In the paper 
by Tomchina and Nechaev (1999) only the case of one-
dimensional motion of the rotor axis was considered. 
The case of plane motion was studied by Malinin and 
Pervozvanskii (1993), who designed  controller using 
optimal control method and Fradkov and Tomchin 
(2004) who proposed a speed-gradient based solution 
for one-rotor vibration unit. 
In this paper the problem of controlling two-rotor 
vibration unit (Andrievsky et al. 2001) is solved by 
means of speed-gradient method. The proposed 
algorithm allows to significantly reduce the required 
level of the controlling torque. The efficiency of the 
algorithm is investigated by means of  simulation. 
 
2. PROBLEM STATEMENT 

Consider the Two-Rotor Mechatronic Vibration Unit 
developed in St. Petersburg, see (Blekhman et al. 1999; 
Andrievsky et al. 2001). The unit consists of three 
blocks: electromechanical double-rotor bench (Fig. 1,2), 
electronic transducer amplifier and PC controller. 
The electromechanical part contains a pair of 
unbalanced vibration actuators. The actuators are 
mounted on the vibration isolated carrier. Each actuator 
contains the DC electrical motor, Cardan joint and un-
balanced rotor. Due to the rotation of the unbalanced 
rotors the centrifugal forces appear. They can be com-
bined in controlled manner producing a variety of body 
oscillations. The unit is equipped with eight sensors. 
The sensors generate signals of the two rotors angular 
position and speed and the body translations. Details 
and operating characteristics of the unit are described in 
(Blekhman et al. 1999; Andrievsky et al, 2001). 



 

 

 

 
 
Figure 1: Schematics of the St.Petersburg Two-Rotor 
Mechatronic Vibration Unit: 1- DC motors; 2- sensors; 
3- frame; 4- rotors; 5- eccentrics; 6- vibrating body 
(platform); 7- springs; 8- forks of vibroactuators; 9- 
Cardan shafts 
 

 
 
 

Figure 2: Fragment of the St.Petersburg 
Two-Rotor Mechatronic Vibration Unit 

 

 
 

Figure 3: Frames and variables for 
the modeling of the Two-Rotor Vibration Unit 

 
In this paper dynamics in inclination angle φ are 
neglected. Using Lagrangian approach, the system 

dynamics are modelled by the following system of 
differential equations  (Andrievsky et al. 2001): 
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where 21,ϕϕ  – rotor angles, x,y – coordinates of the 
system center of mass, ( ) ( )tutu 21 ,  – control actions 
(rotating torque of motors), J - moment of inertia of 
rotors, m - mass of a rotor, M – mass of a platform, ε - 
eccentricity of the rotor centers of mass, xcc,  - 
stiffness, yx kkk ,,ϕ - damping factors (see Fig.3).  
It is well-known (Blekhman 2000; Kononenko 1964), 
that the “capture” of angular velocitу of a rotor 
(Sommerfeld phenomenon) may take place in the near-
resonance zone. The capture phenomenon happens 
when the level of constant control action 
( ) ( ) 11 Mtu i

i −≡ , i=1,2 is small. If the level of constant 
control action ( ) ( ) 121 Mtutu ≡−=  is higher than a 
threshold, the system passes the resonance zone. 
Simulation results for system (1) are shown in Fig. 4 for 
the parameter values: J = 0.014 [kg·m2], m = 1.5 [kg], 
M=9 [kg], ε = 0.04 [m], ϕk  = 0.01 [J·s], 5== yx kk  

[kg/s], 5300=c  [N/m], 1300=xc  [N/m] and the 
constant control action 1M = 0.65 [N·m] (inner curves, 
capture) and 1M  = 0.66 [N·m] (outer curves, passage). 

 
Figure 4: Conventional control, ( ) ( ) 11 Mtu i

i −≡ , 

1M = 0.65 [N·m] (inner curves, capture) and 

1M  = 0.66 [N·m] (outer curves, passage). 
 
The problem is to design the control algorithm 

( )zu U= , providing the spin-up of unbalanced rotor 
until the system passes through resonance zone, where 

[ ]Τϕϕϕϕ= 2211 ,,,,,,, &&&& yyxxz  - state vector of the 



 

 

control plant. It is assumed that the level of control 
signal is restricted and does not allow the system to pass 
through resonance when the control signal is constant.  
 
3. DESIGN OF CONTROL ALGORITHM 

To design the control algorithm we use the speed-
gradient method (Fradkov 1990; Fradkov et. al. 1999).  
At this stage we suppose that the control plant is 
conservative, i.e. the friction equals to zero. The control 
goal is formalized as follows: To find controlling 
function ( )tu  providing the goal equality 

( ) *
2211 ,,,,,,, HyyxxH =ϕϕϕϕ &&&& , where ( )tH  is a 

current energy, *H  is the given energy level 
corresponding to the desired average rotation speed 
(aligorithm parameter). Then it is possible to choose the 
goal functional as follows: 
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where ( )tpp =  is the vector of generalized momenta, 

[ ] Tyxq ,,, 21 ϕϕ=  are generalized coordinates, 
( )qpHH ,=  is the Hamiltonian function (total energy 

of the system), [ ]TB 0,0,1,1= . Then  

( ) ( )( ).2211
* uuHHzQ ϕ+ϕ−= &&&  

and the speed-gradient method applies. One of  the 
standard forms of speed-gradient algorithm is the 
“relay” one: 
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It is worth noticing that the algorithm (3) was designed 
neglecting the system dynamics. In case of multi-DOF 
oscillatory system such a design is not sufficient 
because of interaction between rotors and platform, and 
because of the Sommerfeld phenomenon. It leads to 
appearance of fast oscillating motion that make difficult 
passing through resonance zone. In (Fradkov and 
Tomchin 2004) new control algorithms were proposed 
facilitating passage through resonance by means of 
introducing additional low pass filter. Another 
pecularity of the algorithm (3) is large variability of the 
debalance angular velocity because of changes of 
potential energy due to gravity. To improve the system 
performance it is suggested to introduce switching into 
the control algorithm. Then the algorithm takes the 
form: 
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where ( )tiψ  - filtered variables, => ψψ TT ,0 const.  

The value of ψT  (time constant of the angular velocity 
filters) should be more then the period of the resonant 
oscillations. At the same time, if the value of ψT  is too 
high, the algorithm works too slowly. 
 
4. SIMULATION RESULTS 

The designed hybrid control system was numerically 
investigated to analyze the efficiency of the proposed 
algorithm. Numerical integration was made in 
MATLAB environment by means of Runge-Kutta 
method of second order. The choice of integration 
method takes into account nonsmoothness of the system 
model. The value of the fixed step equal to 0.000125 
[sec] was chosen so as the relative simulation error does 
not exceed  5%. 
The nominal values of system parameters were chosen 
as follows: J = 0.014 [kg·m2], m = 1.5 [kg], M=9 [kg], ε 
= 0.04 [m], ϕk  = 0.01 [J·s], 5== yx kk  [kg/s], 

5300=c  [N/m], 1300=xc  [N/m]. 
The value of the rotating torque 2M  of a motors, which 
allows system to pass the resonance zone with the 
proposed algorithm, but not allows system to pass the 
resonance zone for any M < 2M  was calculated.  
 

 
Figure 5: Controlled passage through resonance,  

2M = 0.42 [N·m], ψT = 0.35 [s] 

 
Next step was to investigate behavior of the closed loop 
system under breaking symmetry of initial conditions. 
The following simulation results are obtained. The 
torques 1M  and 2M  were calculated for every series of 



 

 

experiments. 1M  is the value of the rotating torque of a 
motor, which allows system to pass the resonance zone 
for ( ) 1Mtu ≡ , but not allows system to pass the 
resonance zone for any M0 < M1. 2M  is the value of the 
rotating torque of a motor, which allows the system to 
pass through the resonance zone for relay control 
algorithm (4), but not allows it for any M0 < M2. 
In Fig. 6 the influence of )0(1ϕ  on system dynamics is 
shown. In Fig. 7 the influence of )0(x  on system 
dynamics is shown. It is seen that time histories in the 
case of passage through resonance are almost the same. 

 
Figure 6: The influence of )0(1ϕ  on system dynamics. 

 

 
Figure 7: The influence of )0(x  on system dynamics. 

 
Further the designed control algorithm was numerically 
investigated to analyze the efficiency of the proposed 
algorithm for various values of plant and algorithm 
parameters.  
Firstly, the influence of the stiffness c on system 
dynamics was investigated for nominal values of other 
plant parameters. The dependence of the minimal value 
of control action, allowing the passage through 
resonance, on stiffness c is shown in Fig. 8. It is clear 
that the efficiency is small when c is small. However 
value of rotating torque 1M  can be reduced in 2 times 
if the shaft torsional stiffness c increases.  
 
 

 
Figure 8: The influence of the stiffness c  

on system dynamics 
 
Further the influence of the damping factor ϕk  on 
system dynamics was investigated for nominal values of 
other plant parameters. The dependences of the torques 

1M  and 2M  on the damping factor ϕk  are shown in 

Fig.9. It is seen that dependence on ϕk  is almost linear 
both for the constant control action (dotted line) and 
relay control algorithm (solid line). It is clear that the 
efficiency of the algorithm is high for different values 
of ϕk .  

 
Figure 9: The influence of the damping factor ϕk  

on system dynamics 
 
Finally, the influence of the eccentricity of a rotor ε on 
system dynamics was investigated for nominal values of 
other plant parameters. The dependence of the torques 

1M  and 2M  on the eccentricity ε are shown in Fig. 10. 
It is seen that dependence on ε is almost linear both for 
the constant control action (dotted line) and relay 
control algorithm (solid line). It is clear that the 
efficiency is higher when ε is higher and the value of 
rotating torque can be reduced in 2 times.  



 

 

 
Figure 10: The influence of the eccentricity ε 

on system dynamics 
 
5. INFLUENCE OF ELECTRIC DRIVE 
DYNAMICS ON SYSTEM BEHAVIOR 
 
Inertia of electric drive may seriously influence the 
system performance. In the previous consideration the 
drive dynamics were neglected. Below  the system 
behavior is analysed taking the drive dynamics into 
account. Let the motor be tuned properly, e.g. at the 
optimum module mode. Then the drive dynamics are 
described by the following second order equations 
 
 
 
 
 
where I(t) is motor current, U(t) is voltage (controlling 
variable), M, τ, k are motor parameters. The parameter 
values in simulation were chosen corresponding to real 
motor mounted on the set-up. No extra tuning of 
algorithm parameters was made. Typical simulation 
results are shown in Fig. 11. It is seen that the taking 
into account the motor dynamics slows down the 
passage through resonance yet change of the system 
behavior  is not very significant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Phase of the rotors - influence of the motor 
dynamics: blue curve –without motor, red – with motor. 
 

CONCLUSION 

New switching control algorithm for passing through 
resonance of two-rotor vibration units is proposed based 
on speed-gradient method. Computer simulations show 
that the use of the proposed algorithm significantly 
decreases the level of the controlling torque required to 
pass through the resonance zone. The algorithm is 
simple and has only two design parameters, though the 
system possesses complex behavior. The system 
performance has low sensitivity with respect to 
breaking the symmetry of initial conditions. The 
algorithm efficiency is significant for broad range of 
plant parameters. . Taking into account the motor 
dynamics slows down the passage through resonance 
yet not significantly. 
 
Future research will be devoted to further examination 
of robustness properties of the proposed system and its 
comparison with adaptive approaches. 
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