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Abstract

This paper introduces a new fuzzy membership function - LEE-
oscillatory Chaotic Fuzzy Model (LoCFM). The developmeht o
this model is based on fuzzy logic and the incorporation absh
theory - LEE Oscillator. Prototype systems are being deesdo
for handling imprecise problems, typically involving linigtic
expression and fuzzy semantic meaning. In addition, thempap
also examines the mechanism of the LEE Oscillator through an
alyzing its structure and neural dynamics. It demonstrttes
potential application of the model in future development.
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1 Introduction

Chaotic oscillator shows non-linear dynamic structures fain
erarchy of a system. This paper introduces LEE Oscillator
model and its enhancement LEE Oscillator (Retrograde $igna
ling) model. The structure and analysis of neural dynamfcs o
LEE Oscillator are presented in section Il, then LEE Osiilia
(Retrograde Signalling) model are shown in section Ill. ég-s
tion 1V, we propose a new type of fuzzy membership function - . .
Lee-Oscillatory Chaotic Fuzzy Model (LoCFM) by implement—eaCh of these constituent neurons are given by
ing chaotic oscillator in fuzzy logic. It is to supplemenpérl

Figure 1: LEE Oscillator Model [Lee, 2004]

fuzzy set on modelling uncertainty, we anticipate that LMOE u' =tanh(a; -u—ay - v+1) (1)
suitable for classifying complexity problems in real world o' = tanh(by - u — by - v) @)

w = tanh(I) 3
2 The Background of LEE Oscillator p= =) e * T L )

2.1 Structure of LEE Oscillator Model

Research on neuroscience and brain science in recent yasars h ) i
observed various chaotic phenomena in brain functionsrgFay WNereu. v, w andz are the state variables of the excitatory,
and Korn, 2001],[Korn and Faure, 2003] and behaviour of net'#h'b'toryj input, and output neurons, respectivetgnh() is a
rons are interactive triggering oscillation between atoity and yperbolic tangent functlongl, &, by and_bz are the We'g_ht
inhibitory neurons [Aihara and Matsumoto, 1987]. Based OHarameters for thes_e constitutive neurohss t_he ex_ternal in-
these research findings, we have developed the LEE Oscillaf't Stimulus; and k is the decay constant. Fig. 1 illustrétes
and been able to simulated neural behaviour [Lee, 2004;],[LeLEE Oscn!ator model and F_|g. _2 shpws its bn‘urcatl_on bebavi .
2006]. We believe chaotic oscillators are capable of ptetjc whgr_g regions Aand C are |n_S|gm0|d shgpe apd without chaotic
and modelling highly complex problems in real world. LEE OscaCt'V't'es_' Howe_ver, the_re eXIs_ts a chaotic region B wheakve
illator has shown outstanding results in pattern recogmitiand €Xtérnal input stimulus is received.
explained progressive memory recall scheme by Rubin-vase e
periment [Lee, 2004],[Lee, 2006]. 2.2 Analysis of LEE Oscillator Model

A LEE Oscillator consists of four neural dynamics of four eon The largest Lyapunov Exponent)(is calculated by Wolf’s al-
stitutive neural elementsy, v, w andz, the neural dynamics of gorithm [Wolf et al., 1985],[Peitgen et al., 2004],[Sprd2003]
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Figure 5: LEE Oscillator (Retrograde Signalling) Model

Figure 3: 3D Projection of LEE Oscillator (5/1/500)unv vs. z
rotransmitter must be moved to distant axon terminals or den

drites. This movement of a cell body towards terminals or-den
drites is called anterograde transport. On the other haatd, r
rograde transport is a backward transmission mechanismchwhi
transmits neurotrophin from axon terminals to the cell bidahg-
berg, 2005],[Levitan and Kaczmarek, 2001],[Neet and Camp-
enot, 2001],[Nicholls et al., 2001].

Neuroscientists have made an important discovery in recent
years, they found out the major functionality of retrogréades-

port is signalling. This functionality is also called Rejrade
Signalling. Retrograde signals influence neuronal sukvili&
ferentiation, homeostasis and plasticity [Howe and Mabley
2005],[Sanyal et al., 2004],[Zweifel et al., 2005]. Theekttre-
Figure 4: 3D Projection of LEE Oscillator (10/20/500)irv vs. 2 search on neuroscience pointed out that neurological stsea
such as Alzheimer’s disease and Down’s syndrome are signifi-
cantly related to malfunction of retrograde transport na@ism
ﬁopper et al., 2001]. Fig. 5 is a depiction of LEE Oscillator
% etrograde Signalling) Model [Wong et al., 2008],[Kwong e
al., 2008] and Egs. 5 to 8 represent the neural dynamics ®f thi
model.

and uses to analyse the dynamics of LEE Oscillator, we h
tested using two fixed sets of parameters with varyimng[-1,
+1], those parameters area)=5, a,=5, b; =1, b,=1 andk=500
(Fig. 3); and ii)a; =10, a,=10, b;=20, b,=20 andk=500 (Fig.
4). The Lyapunov Exponents for the former one is 0.006001

A <3.3661 and the latter one is 0.1814 <2.3200. v =tanh(ay -u—as-v+ag-z+ag-]1) (5)
v’ =tanh(b3-z—by-u—Dby-v+by-I) (6)

3 The Enhancement of LEE Oscillator - LEE Oscillator w = tanh(I) @)
(Retrograde Signalling) Model Z = =) LI @)

3.1 The Implementation of Retrograde Signalling Feature

in Axonal Transport
The enhancement of the LEE Oscillator is derived from ret-The meaning of all variables is the same as the previous model
rograde transport mechanism in axons, axonal transpat (awhereu, v, w andz act as the excitatory, inhibitory, input, and
named as axoplasmic flow) was discovered by Paul Weiss @utput neurons respectivelignh() is a hyperbolic tangent func-
1948 [Nicholls et al., 2001]. Axons are not able to synthesiztion; a; 1,4 andb; x4 are the weight parameters for the neurons;
proteins; all synthesis of proteins takes places in thetmmlly. | andk depict external input stimulus and decay constant respec-
Receptors, signalling proteins and enzymes for synthésisie  tively.



Bifurcation Diagram of Lee Oscillator (Retrograde Signalling) Model

Table 1: Different Parameter Settings used in LEE Oscillé&8) Model

Oscillator Type

Parameters A B C D
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Figure 6: Bifurcation Diagram of LEE Oscillator (Retrogea8ignalling) Model

3.2 Modification on Previous Model - Type A Oscillator

There are three major modifications on previous model. Ifjrst

output value ofz is re-imported into both the excitatory neuron

(Eg. 5) and the inhibitory neuron (Eg. 6). This process simu- e e
lated retrograde signalling mechanism to send signals fuack
neuronal plasticity. One more provision for assignirigto Eq.

6 is to simulate human learning behaviour, in which they usu-
ally learn through experiences, errors and pains. Secphdly
assigned in Eq. 6 is due to incoming signals which should be  r
considered in inhibitory neurons, instead of excitatorymes
only. Thirdly, switchingv-u (Eq.4) fromu-v (Eq.8) in the orig-
inal work [Lee, 2004],[Lee, 2006] is a different concept iaga
the previous model where the concept of presynaptic inbibit
is implemented in this modification. Presynaptic inhibitis a
neurotransmitter release mechanism, a strong suppresfsion
sponses of an excitatory neuron before stimulus reacheptgn
terminals mediated by an inhibitory neuron [Levitan and &ac L
marek, 2001], [Nicholls et al., 2001]. Lastly, new parametg,
as, b3 andb4 were added in Eqs. 7 & 8 as every variable shoulffigure 7: Bifurcation Diagram of LEE Oscillator (Retrogeaflignalling) Model
have its own parameter to adjust the outcomes. - Type B Oscillator

3.3 Enhancement

There are three improvements from previous model. First, t
variability of chaotic state is increased because of newarpar
ters being introduced in this model. Chaotic regions areeets
reshape and it is possible to generate either single or tiaatic
regions by tuning different parameters. Figs. 6 (Table peT)
and 7 (Table 1, Type B) show bifurcation behaviour by usirg di
ferent parameter sets on Lee Oscillator (Retrograde Siggpl
model, more details of these oscillators are shown in Append
The values in x-axis are representedltand numbers in y-axis
are results of. Second, the chaotic region is wider than that o
previous model, so the temporal information processingbean
more effective. Lastly, the generation of chaotic regiorihia
LEE Oscillator (Retrograde Signalling) model requireg juse-
tenth of the number of iterations of previous models, andHisr
reason, the computation time is reduced.

hI'echnical details of type A to D oscillators are given in Ap-
pendix. Figs. 8to 11 present different neural dynamics vthen
oscillator is with different parameters, ellipse orbits ahown in
Figs. 8 and 10, spiral shell shape displayed in Fig. 9 andlinal
Fig. 11 demostrates similar behaviour as a Lissajous cUitve.
reasons why different parameters generate different shage
still under investigation, but we assume that one of the iposs
ble reasons is that the oscillator contains characteoétiyper-

haos. Another research direction is why parameters cliainge

EE Oscillator still keep its dynamics in two armed spirat-pa
tern (Figs. 3 and 4), but retrograde signalling model chdritge
dynamics according to parameters.

3.4 Analysis of LEE Oscillator (Retrograde Signalling)
Model

We choose a set of constant parameters (shown in Table 1) and
vary the value of in [-1, +1], leading to the following Lyapunov
Exponents:
Type A oscillator (Fig. 8), 0.2864 A <1.0087
Type B oscillator (Fig. 9), 0.1643 A <1.0716
Type C oscillator (Fig. 10), 0.2832 A <1.0091
Type D oscillator (Fig. 11), 0.1643 \ <1.8580.

The above Lyapunov Exponent values are in positive, so LEE Figure 8: 3D Projection of Type A Oscillator in v vs. z
Oscillator (Retrograde Signalling) model is a chaotic eyst




Figure 9: 3D Projection of Type B Oscillator ip v vs. z

one of the more suitable tools in bridging human and computer
For the above reasons and the successfulness of LEE Qscillat
model, we believe that there is another way to model uncertai
ties in computational intelligence. So, we proposed a it@or
work for a new series of fuzzy logic - LEE-Oscillatory Chaoti
Fuzzy Model (LoCFM). In next section, we introduce two pro-
totypes to show the integration between chaotic oscillatat
fuzzy membership function to become the proposed models.

4.1 Prototype Structure

Fig. 12 and Eqgs. 9-12 show the prototype of Chaotic Fuzzy Set
- Number One (Prototype CF1):

Figure 10: 3D Projection of Type C Oscillatorinv vs. z

Figure 11: 3D Projection of Type D Oscillatorinvvs. z
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Figure 12: LEE-Oscillatory Chaotic Fuzzy Model - Prototy@El

v =tanh(a; -u—ag - v+1) )

v = tanh(b; -u — by - v) (10)

w = tanh(I) (11)

z=m-(( =) e fw)+n (12)

Prototype CF1 had a minor modification based on Egqdndn

are parameters of slope-intercept form, Fig. 12 shows tha-me
bership function of Prototype CF1. This prototype uses ras Si
lar as a shoulder membership function in type-1 fuzzy logit,

4 The Prototype of a New Fuzzy Membership Function -

LEE-Oscillatory Chaotic Fuzzy Model (LoCFM)

it is with chaotic regions.

Fig. 13 and Egs. 13-15 show the prototype of Chaotic Fuzzy
Set - Number Two (Prototype CF2):

As we all know human mind does not work in digital pro-
cess, but computer does. Therefore, fuzzy logic is needed to
link human’s fuzzy feeling to computer through implemegtin
probability and degree of membership associated with fgety
It is doubt the possibility of modelling uncertainties,hatigh
Prof. ZADEH proposed the concept of type-2 fuzzy logic to
strengthen the concept of uncertainty [Zadeh, 1975], [Hade
2006], [Zadeh, 2008]. According to a number of research in
brain science, scientists have found that our brain is indega-
nized by chaos [Faure and Korn, 2001],[Korn and Faure, 2003]
We conjecture relationship between chaotic patterns anzyfu
concepts in brain as follows. Brain operates in the rules of
chaos theory by generating different neural dynamics $gna
then fuzzy feelings are the results of the combination dedif
ent signals. These feelings let us realize the temperafusa-o
ter, emotion or even cognition. Therefore, chaos theory beay

Figure 13: LEE-Oscillatory Chaotic Fuzzy Model - PrototypE2
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Appendix Bifurcation Behavior of LEE Oscillator (Retro-
grade Signalling) Model and Technical Details of Figures

For the following Bifurcation diagrams-axis represents the
values ofl andY-axis are the output valueg)(of the LEE Osc-
illator (Retrograde Signalling) model .

Figure 14: Bifurcation Behavior (detailed part) of Type AdDistor
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Figure 15: Bifurcation Behavior (detailed part) of Type Bdillator

Figure 16: Bifurcation Behavior (detailed part) of Type Cclllator

Figure 17: Bifurcation Behavior (detailed part) of Type Ddllator

Table 2: Table of Technical Details of Figures for GeneatieE Oscillator’s

Neural Dynamic

Figure | Egs. No.| Parameters Initial Conditions
=5 u=0
=5 v=0

3 1-4 b=1 z=0
by=1 I=[-1,+1]
k=500
a,=10 u=0
=10 v=0

4 1-4 b,=20 z=0
by=20 I=[-1,+1]
k=500
a,=0.6 u=0
a=0.6 v=0
a3=-0.5 z=0
a,=0.5 I=[-1,+1]

8 58 | p=06
b2:'0.6
b3:'0.5
b4:0.5
k=50
=1 u=0
=1 v=0
az=1 z=0
=1 I=[-1,+1]

9 5-8 b=-1
by=-
b3:'1
b4:-1
k=50
a,=0.55 u=0
a=0.55 v=0
a3=-0.5 z=0
a,=0.5 I=[-1,+1]

10 58 | p=-055
b,=-0.55
b3:0.5
b4=-0.5
k=50
a=1 u=0
=1 v=0
=1 z=0
=1 I=[-1,+1]

11 5-8 b=-1
b2=-1
b3:'1
b4=-1
k=300




