
PHYSCON 2009, Catania, Italy, September, 1–September, 4 2009

THE MODELING OF FUZZY SYSTEMS BASED ON
LEE-OSCILLATORY CHAOTIC FUZZY MODEL (LOCFM)

Max H. Y. WONG and James N. K. LIU
Department of Computing

The Hong Kong Polytechnic University
Hong Kong

maxwhy@gmail.com
csnkliu@comp.polyu.edu.hk

Dennis T. F. SHUM and Raymond S. T. LEE
IATOPIA Research Centre

Hong Kong
dennisshum@iatopia.com

irc@iatopia.com

Abstract
This paper introduces a new fuzzy membership function - LEE-

oscillatory Chaotic Fuzzy Model (LoCFM). The development of
this model is based on fuzzy logic and the incorporation of chaos
theory - LEE Oscillator. Prototype systems are being developed
for handling imprecise problems, typically involving linguistic
expression and fuzzy semantic meaning. In addition, the paper
also examines the mechanism of the LEE Oscillator through an-
alyzing its structure and neural dynamics. It demonstratesthe
potential application of the model in future development.
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1 Introduction
Chaotic oscillator shows non-linear dynamic structures and hi-

erarchy of a system. This paper introduces LEE Oscillator
model and its enhancement LEE Oscillator (Retrograde Signal-
ling) model. The structure and analysis of neural dynamics of
LEE Oscillator are presented in section II, then LEE Oscillator
(Retrograde Signalling) model are shown in section III. In sec-
tion IV, we propose a new type of fuzzy membership function -
Lee-Oscillatory Chaotic Fuzzy Model (LoCFM) by implement-
ing chaotic oscillator in fuzzy logic. It is to supplement type-1
fuzzy set on modelling uncertainty, we anticipate that LoCFM is
suitable for classifying complexity problems in real world.

2 The Background of LEE Oscillator
2.1 Structure of LEE Oscillator Model
Research on neuroscience and brain science in recent years has

observed various chaotic phenomena in brain functions [Faure
and Korn, 2001],[Korn and Faure, 2003] and behaviour of neu-
rons are interactive triggering oscillation between excitatory and
inhibitory neurons [Aihara and Matsumoto, 1987]. Based on
these research findings, we have developed the LEE Oscillator
and been able to simulated neural behaviour [Lee, 2004],[Lee,
2006]. We believe chaotic oscillators are capable of predicting
and modelling highly complex problems in real world. LEE Osc-
illator has shown outstanding results in pattern recognitions and
explained progressive memory recall scheme by Rubin-vase ex-
periment [Lee, 2004],[Lee, 2006].
A LEE Oscillator consists of four neural dynamics of four con-

stitutive neural elements:u, v, w andz, the neural dynamics of

Figure 1: LEE Oscillator Model [Lee, 2004]

each of these constituent neurons are given by

u′ = tanh(a1 · u − a2 · v + I) (1)

v′ = tanh(b1 · u − b2 · v) (2)

w = tanh(I) (3)

z = (u′
− v′) · e−kI

2

+ w (4)

whereu, v, w and z are the state variables of the excitatory,
inhibitory, input, and output neurons, respectively;tanh() is a
hyperbolic tangent function;a1, a2, b1 and b2 are the weight
parameters for these constitutive neurons;I is the external in-
put stimulus; and k is the decay constant. Fig. 1 illustratesthe
LEE Oscillator model and Fig. 2 shows its bifurcation behavior
where regions A and C are in sigmoid shape and without chaotic
activities. However, there exists a chaotic region B when weak
external input stimulus is received.

2.2 Analysis of LEE Oscillator Model
The largest Lyapunov Exponent (λ) is calculated by Wolf’s al-

gorithm [Wolf et al., 1985],[Peitgen et al., 2004],[Sprott, 2003]



Figure 2: Bifurcation Diagram of LEE Oscillator [Lee, 2004]

Figure 3: 3D Projection of LEE Oscillator (5/1/500) inu, v vs. z

Figure 4: 3D Projection of LEE Oscillator (10/20/500) inu, v vs. z

and uses to analyse the dynamics of LEE Oscillator, we had
tested using two fixed sets of parameters with varyingI in [-1,
+1], those parameters are i)a1=5, a2=5, b1=1, b2=1 andk=500
(Fig. 3); and ii)a1=10, a2=10, b1=20, b2=20 andk=500 (Fig.
4). The Lyapunov Exponents for the former one is 0.000001≤

λ ≤3.3661 and the latter one is 0.1817≤ λ ≤2.3200.

3 The Enhancement of LEE Oscillator - LEE Oscillator
(Retrograde Signalling) Model

3.1 The Implementation of Retrograde Signalling Feature
in Axonal Transport

The enhancement of the LEE Oscillator is derived from ret-
rograde transport mechanism in axons, axonal transport (also
named as axoplasmic flow) was discovered by Paul Weiss in
1948 [Nicholls et al., 2001]. Axons are not able to synthesize
proteins; all synthesis of proteins takes places in the cellbody.
Receptors, signalling proteins and enzymes for synthesis of neu-

Figure 5: LEE Oscillator (Retrograde Signalling) Model

rotransmitter must be moved to distant axon terminals or den-
drites. This movement of a cell body towards terminals or den-
drites is called anterograde transport. On the other hand, ret-
rograde transport is a backward transmission mechanism which
transmits neurotrophin from axon terminals to the cell body[Fre-
berg, 2005],[Levitan and Kaczmarek, 2001],[Neet and Camp-
enot, 2001],[Nicholls et al., 2001].
Neuroscientists have made an important discovery in recent

years, they found out the major functionality of retrogradetrans-
port is signalling. This functionality is also called Retrograde
Signalling. Retrograde signals influence neuronal survival, dif-
ferentiation, homeostasis and plasticity [Howe and Mobley,
2005],[Sanyal et al., 2004],[Zweifel et al., 2005]. The latest re-
search on neuroscience pointed out that neurological diseases
such as Alzheimer’s disease and Down’s syndrome are signifi-
cantly related to malfunction of retrograde transport mechanism
[Copper et al., 2001]. Fig. 5 is a depiction of LEE Oscillator
(Retrograde Signalling) Model [Wong et al., 2008],[Kwong et
al., 2008] and Eqs. 5 to 8 represent the neural dynamics of this
model.

u′ = tanh(a1 · u − a2 · v + a3 · z + a4 · I) (5)

v′ = tanh(b3 · z − b1 · u − b2 · v + b4 · I) (6)

w = tanh(I) (7)

z′ = (v′
− u′) · e−kI

2

+ w (8)

The meaning of all variables is the same as the previous model
whereu, v, w andz act as the excitatory, inhibitory, input, and
output neurons respectively;tanh() is a hyperbolic tangent func-
tion; a1 to 4 andb1 to 4 are the weight parameters for the neurons;
I andk depict external input stimulus and decay constant respec-
tively.



Table 1: Different Parameter Settings used in LEE Oscillator(RS) Model

Oscillator Type
Parameters A B C D

a1 0.6 1 0.55 1
a2 0.6 1 0.55 1
a3 -0.5 1 -0.5 1
a4 0.5 1 0.5 1
b1 -0.6 -1 -0.55 -1
b2 -0.6 -1 -0.55 -1
b3 -0.5 -1 0.5 -1
b4 0.5 -1 -0.5 -1
k 50 50 50 300

3.2 Modification on Previous Model
There are three major modifications on previous model. Firstly,

output value ofz is re-imported into both the excitatory neuron
(Eq. 5) and the inhibitory neuron (Eq. 6). This process simu-
lated retrograde signalling mechanism to send signals backfor
neuronal plasticity. One more provision for assigningz into Eq.
6 is to simulate human learning behaviour, in which they usu-
ally learn through experiences, errors and pains. Secondly, I
assigned in Eq. 6 is due to incoming signals which should be
considered in inhibitory neurons, instead of excitatory neurons
only. Thirdly, switchingv-u (Eq.4) fromu-v (Eq.8) in the orig-
inal work [Lee, 2004],[Lee, 2006] is a different concept against
the previous model where the concept of presynaptic inhibition
is implemented in this modification. Presynaptic inhibition is a
neurotransmitter release mechanism, a strong suppressionof re-
sponses of an excitatory neuron before stimulus reaches synaptic
terminals mediated by an inhibitory neuron [Levitan and Kacz-
marek, 2001], [Nicholls et al., 2001]. Lastly, new parametersa3,
a4, b3 andb4 were added in Eqs. 7 & 8 as every variable should
have its own parameter to adjust the outcomes.

3.3 Enhancement
There are three improvements from previous model. First, the

variability of chaotic state is increased because of new parame-
ters being introduced in this model. Chaotic regions are easier to
reshape and it is possible to generate either single or dual chaotic
regions by tuning different parameters. Figs. 6 (Table 1, Type A)
and 7 (Table 1, Type B) show bifurcation behaviour by using dif-
ferent parameter sets on Lee Oscillator (Retrograde Signalling)
model, more details of these oscillators are shown in Appendix.
The values in x-axis are represented byI and numbers in y-axis
are results ofz. Second, the chaotic region is wider than that of
previous model, so the temporal information processing canbe
more effective. Lastly, the generation of chaotic region inthe
LEE Oscillator (Retrograde Signalling) model requires just one-
tenth of the number of iterations of previous models, and forthis
reason, the computation time is reduced.

3.4 Analysis of LEE Oscillator (Retrograde Signalling)
Model

We choose a set of constant parameters (shown in Table 1) and
vary the value ofI in [-1, +1], leading to the following Lyapunov
Exponents:
Type A oscillator (Fig. 8), 0.2861≤ λ ≤1.0087
Type B oscillator (Fig. 9), 0.1643≤ λ ≤1.0716
Type C oscillator (Fig. 10), 0.2832≤ λ ≤1.0091
Type D oscillator (Fig. 11), 0.1643≤ λ ≤1.8580.
The above Lyapunov Exponent values are in positive, so LEE

Oscillator (Retrograde Signalling) model is a chaotic system.

Figure 6: Bifurcation Diagram of LEE Oscillator (Retrograde Signalling) Model
- Type A Oscillator

Figure 7: Bifurcation Diagram of LEE Oscillator (Retrograde Signalling) Model
- Type B Oscillator

Technical details of type A to D oscillators are given in Ap-
pendix. Figs. 8 to 11 present different neural dynamics whenthe
oscillator is with different parameters, ellipse orbits are shown in
Figs. 8 and 10, spiral shell shape displayed in Fig. 9 and finally
Fig. 11 demostrates similar behaviour as a Lissajous curve.The
reasons why different parameters generate different shapes are
still under investigation, but we assume that one of the possi-
ble reasons is that the oscillator contains characteristicof hyper-
chaos. Another research direction is why parameters changed in
LEE Oscillator still keep its dynamics in two armed spiral pat-
tern (Figs. 3 and 4), but retrograde signalling model changed its
dynamics according to parameters.

Figure 8: 3D Projection of Type A Oscillator inu, v vs. z



Figure 9: 3D Projection of Type B Oscillator inu, v vs. z

Figure 10: 3D Projection of Type C Oscillator inu, v vs. z

Figure 11: 3D Projection of Type D Oscillator inu, v vs. z

4 The Prototype of a New Fuzzy Membership Function -
LEE-Oscillatory Chaotic Fuzzy Model (LoCFM)

As we all know human mind does not work in digital pro-
cess, but computer does. Therefore, fuzzy logic is needed to
link human’s fuzzy feeling to computer through implementing
probability and degree of membership associated with fuzzyset.
It is doubt the possibility of modelling uncertainties, although
Prof. ZADEH proposed the concept of type-2 fuzzy logic to
strengthen the concept of uncertainty [Zadeh, 1975], [Zadeh,
2006], [Zadeh, 2008]. According to a number of research in
brain science, scientists have found that our brain is in fact orga-
nized by chaos [Faure and Korn, 2001],[Korn and Faure, 2003].
We conjecture relationship between chaotic patterns and fuzzy
concepts in brain as follows. Brain operates in the rules of
chaos theory by generating different neural dynamics signals,
then fuzzy feelings are the results of the combination of differ-
ent signals. These feelings let us realize the temperature of wa-
ter, emotion or even cognition. Therefore, chaos theory maybe

one of the more suitable tools in bridging human and computer.
For the above reasons and the successfulness of LEE Oscillator
model, we believe that there is another way to model uncertain-
ties in computational intelligence. So, we proposed a theoretic
work for a new series of fuzzy logic - LEE-Oscillatory Chaotic
Fuzzy Model (LoCFM). In next section, we introduce two pro-
totypes to show the integration between chaotic oscillatorand
fuzzy membership function to become the proposed models.

4.1 Prototype Structure
Fig. 12 and Eqs. 9-12 show the prototype of Chaotic Fuzzy Set

- Number One (Prototype CF1):

Figure 12: LEE-Oscillatory Chaotic Fuzzy Model - PrototypeCF1

u′ = tanh(a1 · u − a2 · v + I) (9)

v′ = tanh(b1 · u − b2 · v) (10)

w = tanh(I) (11)

z = m · ((u′
− v′) · e−kI

2

+ w) + n (12)

Prototype CF1 had a minor modification based on Eq. 4,m andn
are parameters of slope-intercept form, Fig. 12 shows the mem-
bership function of Prototype CF1. This prototype uses as simi-
lar as a shoulder membership function in type-1 fuzzy logic,but
it is with chaotic regions.
Fig. 13 and Eqs. 13-15 show the prototype of Chaotic Fuzzy

Set - Number Two (Prototype CF2):

Figure 13: LEE-Oscillatory Chaotic Fuzzy Model - PrototypeCF2



u′ = a1 · u − a2 · v + a3 · z + a4 · I (13)

v′ = b3 · z − b1 · u − b2 · v + b4 · I (14)

z′ = e
−

[(u
′
·v

′
·k)−c]2

2σ2 (15)

The above equations have been modified based on LEE Osc-
illator (Retrograde Signalling) model, and the variables and
structures are more or less the same as those of oscillator, but
with two major changes. First, the hyperbolic tangent function
(tanh) is removed in order to compute input values which are
smaller than -1 or larger than +1. Second, a Gaussian function
is implemented in output neuron (z) for generating bell curves as
membership function,c andσ are parameters of Gaussian func-
tion to control the position of the centre of the peak and the width
of thebell curve. Fig. 13 illustrates prototype CF2, which is used
to extend the normal Gaussian fuzzy set to a chaotic Gaussian
fuzzy set.

4.2 Potential Advantages
LoCFM combined the characteristics of type-1 fuzzy member-

ship functions and chaos theory. We assume that the mixture of
fuzzy linguistic and chaotic phenomenon offered a fertile ground
for fuzzy classification and prediction on data which contained
chaotic patterns. It is because chaotic fuzzy set can provide
one more dimension in the chaotic region to transform crisp
into membership value through non-linear dynamics, that type-
1 fuzzy logic cannot be simulated. On the other hand, chaotic
region is generated by a small number of equations, compar-
ing with complicated calculations used in type-2 fuzzy. LoCFM
may be a possible solution for reducing computation time and
performing the functionality of type-2 fuzzy logic as well.

5 Summary
In this paper, we have reported and analyzed LEE Oscillator

model and its enhanced retrograde signalling model. Then, we
have introduced a new concept of chaotic fuzzy set - LEE-
Oscillatory Chaotic Fuzzy Model (LoCFM) which provides an
advanced paradigm in future computational intelligence tech-
niques. The above models are required for further investigations,
our future developments are in four folds. First, the LEE Osc-
illator models are desired an in-depth study on chaotic dynam-
ics. Second, Exploring different chaotic fuzzy sets, such as im-
plementing chaotic features into triangular and trapezoidshaped
fuzzy sets. Third, towards a comprehensive theory of LoCFM,
there are two major problems which need to be solved. i. How
chaotic fuzzy models process by different operators including
union, intersection and complement operations. ii. Inference en-
gine and defuzzification process are required to be modified in
order to suit with the LoCFM. Forth, A lot of experiments are de-
sired to compare the performance and accuracy of LoCFM with
fuzzy features.
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Appendix Bifurcation Behavior of LEE Oscillator (Retro-
grade Signalling) Model and Technical Details of Figures

For the following Bifurcation diagrams,X-axis represents the
values ofI andY-axis are the output values (z) of the LEE Osc-
illator (Retrograde Signalling) model .

Figure 14: Bifurcation Behavior (detailed part) of Type A Oscillator

Figure 15: Bifurcation Behavior (detailed part) of Type B Oscillator

Figure 16: Bifurcation Behavior (detailed part) of Type C Oscillator

Figure 17: Bifurcation Behavior (detailed part) of Type D Oscillator

Table 2: Table of Technical Details of Figures for Generating LEE Oscillator’s
Neural Dynamic

Figure Eqs. No. Parameters Initial Conditions

3 1-4

a1=5 u=0
a2=5 v=0
b1=1 z=0
b2=1 I=[-1,+1]
k=500

4 1-4

a1=10 u=0
a2=10 v=0
b1=20 z=0
b2=20 I=[-1,+1]
k=500

8 5-8

a1=0.6 u=0
a2=0.6 v=0
a3=-0.5 z=0
a4=0.5 I=[-1,+1]
b1=-0.6
b2=-0.6
b3=-0.5
b4=0.5
k=50

9 5-8

a1=1 u=0
a2=1 v=0
a3=1 z=0
a4=1 I=[-1,+1]
b1=-1
b2=-1
b3=-1
b4=-1
k=50

10 5-8

a1=0.55 u=0
a2=0.55 v=0
a3=-0.5 z=0
a4=0.5 I=[-1,+1]

b1=-0.55
b2=-0.55
b3=0.5
b4=-0.5
k=50

11 5-8

a1=1 u=0
a2=1 v=0
a3=1 z=0
a4=1 I=[-1,+1]
b1=-1
b2=-1
b3=-1
b4=-1
k=300


