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Abstract 

The concentration convection in an isothermal 
liquid with a surfactant concentration gradient, 
arising near a fluid drop clamped between the 
vertical walls of a horizontal channel is studied 
numerically within the framework of simple 
mathematical model with the surface phase at the 
drop-liquid interface formed by adsorption 
/desorption process. The interaction between the 
buoyancy and the Marangoni convective flows is 
responsible for the onset of auto-oscillation regime. 
In numeric experiments, more than 20 outbursts of 
the Marangoni convection were observed. Such 
oscillations have been experimentally investigated 
with the help of interferometric technique. The 
surfactant distributions obtained numerically at 
different oscillation phases agree well the 
experimental data. 
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1 Introduction 

In recent years, convective flows at the interface 
formed by gas bubbles and immiscible liquid drops 
in the heterogeneous solutions of surface-tension 
active substances (surfactants) have been the focus 
of close attention of many researchers. The specific 
feature of these flows is that they occur at weak 
diffusion (the values of the Schmidt numbers are 
about 103) and changes in the spatial concentration 
of the surfactant are mainly due to convective 
transfer. A series of experimental studies [Kostarev 
et al., 2004; 2005; 2006; 2007] using interferometric 
technique has revealed an interesting phenomenon – 
the onset of self-oscillatory regimes of the 
convection motion near the bubble and drop surfaces 
in an aqueous solution with vertical surfactant 

concentration gradient. The flow oscillations were 
caused by specific competition of two solutal 
(capillary and gravitational) convective mechanisms 
of mass transfer having different characteristic times. 
Initially, a fluid flow arises as an outbreak of the 
solutocapillary Marangoni convection in the vicinity 
of the interface and then over an appreciable period 
of time it develops as a buoyancy-driven motion. 
This oscillations can be observed during a tens of 
minutes and after a lapse of time abruptly ceased. 
The period and duration of the oscillations depended 
on initial concentration gradient, solution average 
concentration and physico-chemical parameters, 
geometry of the liquid bulk, bubbles/drops 
dimensions.  

In [Birikh et al., 2006] such self-oscillations were 
described in the framework of the mathematical 
model with diffusion transfer of the surfactant to the 
air bubble surface (without formation of the surface 
phase). In this paper, we simulate the solutal 
Marangoni convection near the interface of the 
liquid drop entrapped between the walls of a plane 
lengthy channel of rectangular cross-section, filled 
with a stratified surfactant solution. We consider the 
boundary conditions version at the fluid-fluid 
interface in which a surfactant, soluble in both fluids, 
passes the phase boundary due to adsorption / 
desorption processes and forms a surface phase. 
 
 
2 Experimental observation 

Investigations were made with the help of the 
experimental setup represented schematically in 
Fig. 1. The working fluid (aqueous solutions of 
isopropyl alcohol) filled the cavity in the form of 
extended horizontal channel of rectangular 
cross-section of height h = 2 mm and thickness 1.2 
mm, which was confined between two vertical 
interference glass walls coated with reflecting 
semi-transparent material (see Fig. 1a) purposely for 
making observations. Due to a small thickness of the 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematics of experimental setup: 
1 — interferometric semi-transparent glasses;  

2 — channel with fluid; 3 — air bubble; 
4 — objective lens; 5 — semi-transparent mirror; 

6 — laser; 7 — video camera. 
 

 
layer the arising flows and the distribution of 
concentration (averaged across the layer) turned out 
to be two-dimensional. Such configuration of the 
experimental cuvette opens up the possibility of 
comparison the results of experiments with the 
results of numerical simulation. The content 
distribution in the fluid mixture was visualized with 
the aid of the Fizeau interferometer (Fig. 1b) as a 
pattern of isolines of the refraction index, which 
under isothermal conditions depends on the alcohol 
concentration. The difference in the values of the 
refraction index between two adjacent 
monochromatic interference bands calculated for 
this particular channel thickness amount to 
0.27×10–3. In view of non-linear character of 
concentration dependence of the refraction index 
this corresponded to variation of the isopropyl 
alcohol concentration 0.33–0.35%. The interference 
patterns were recorded in transmitted and reflected 
light by video camera (25 sec–1, resolution of 
640×480). The maximum error of the concentration 
measurements did not exceed 0.1%. All 
measurement were carried out at constant ambient 
temperature 20±1°С. 

Initially the cavity was filled by the pure water. A 
drop of chlorobenzene, which is immiscible in the 
water, was injected by means of a syringe into a 
channel cavity from one of its ends in such a way 
that completely bridged over the channel and had 
free lateral surface. Then, from the other end, the 
cavity was gradually filled with concentrated 
solutions of isopropyl alcohol (with weight percent 
concentration ranging from 10 to 40%), while excess 
of water was pumped out. Since alcohol is lighter 
than water, this led to formation of a rather slow 
large-scale advective gravitational flow in the 
channel, during which a narrow "tongue" of a more 

concentrated surfactant solution flowed along the 
upper channel boundary toward the drop forming 
near the interface a region with upward-directed 
concentration gradient. 

Fig. 2 show the serial interference patterns of the 
concentration filed near the lateral boundary of the 
chlorobenzene drop in the alcohol solution. In 
distinction from thermocapillary flow known to 
develop in a non-threshold manner at arbitrary small 
values of the interface temperature gradient, the 
solutocapillary flow was found to initiate not at the 
time when the surfactant "tongue" reached the drop 
surface, but with some delay (Figs. 2a-2с). It can be 
seen from inerferograms that the isopropanol 
reaches the surface of the drop and even diffuses 
through it generating in chlorobenzene a gradient of 
surfactant concentration as well before the origin of 
Marangoni convection at the interface. Then the 
equilibrium was abruptly disturbed (at ∆t ~ 1 min 
after the "tongue" of the surfactant has touched the 
drop surface and at the difference of the solution 
concentration *С∆  between the upper and lower 
drop ends equalized to 2.2%). Then very quickly 
(during ∼1 sec) a rather intensive Marangoni flow 
was initiated in the form of a vortex cell, in which 
the surfactant under the action of solutocapillary 
forces was carried along the interface toward the 
lower drop margin (Fig. 2d). Owing to fluid 
continuity the arising flow accelerated the flux of the 
concentrated surfactant solution along the upper 
boundary of the channel towards the drop surface, 
adding thereby intensity to the existing convective 
vortex (Fig. 2e). However, the originated vortex cell, 
entrapping more and more portions of highly 
concentrated surfactant solution, became 
increasingly light. Rising up it eventually cut off the 
arriving jet of the alcohol from the top of the drop. 
As a result, the vortex flow ceased abruptly and the 
drop interface turned out to be surrounded by a thin 
layer of the surfactant solution having the uniform 
concentration (Fig. 2f). After that the vertical 
stratification of the solution began to slowly restore 
under the action of buoyancy force. 

However, decay of the capillary flows did not 
imply cessation of the fluid motion in the channel 
because equalizing of the generated horizontal 
gradient of the surfactant concentration made the 
advective flow draw again a concentrated surfactant 
solution to the upper pole of the drop (Fig. 2g). After 
the flux of the surfactant touched the drop surface, 
the solutocapillary vortex recurred (Fig. 2h). The 
cycle repeated iteratively, with the difference that the 
oscillation period increased with time whereas 
intensity of the vortex flow decreased due to a 
gradual decrease of the vertical concentration 
gradient as a result of convective stirring of the fluid. 
The Marangoni convection entirely ceased at the 
time when concentration of the solution was 
equalized throughout the whole length of the 
channel.
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Figure 2: Interferograms of concentration fields for a chlorobenzene drop in isopropyl alcohol solution 

at t = 0 (a), 30 (b), 60 (c), 61 (d), 66 (e), 70 (f), 76 (g), 77 (h) sec. 
 
 
3 Mathematical model 

Let us consider a two-dimensional problem of 
solutal convection in a plane horizontal channel 
filled with a fluid, which has horizontally 
non-uniform distribution of a surfactant with its 
maximum concentration at one of the channel ends. 
At the other end of the channel, where surfactant 
concentration is zero, we place a drop of dissimilar 
fluid insoluble in the base fluid. The drop is taken to 
be large enough to block off the gap in the channel. 
To simplify a numerical model we assume that the 
boundary between the fluid in the channel (phase 1) 
and the drop (phase 2) is vertical.  

The region geometry is shown in Fig. 3. The drop 
width, d, is equal to channel height, h, and channel 
length, L, is equal to 5h. 

 
 
 
 
 
 
 
 

Figure 3: Geometry of the calculating region. 

The surfactant is soluble in both fluids and 
diminishes their density proportionally to the 
volumetric concentration c: )1(0 сiii β−ρ=ρ . 

A transition of the substance from one region to 
another is realized through the surface phase due to 
the adsorption process (transfer of the surfactant 
molecules from the volume phase onto the phase 
boundary) and the inverse process of desorption. 
The quantity of the surfactant at the interface (in the 
surface phase) is characterized by surface 
concentration Γ. Its variation in time at each point of 
the interface is described by the transfer equation 
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Here the second term in the left-hand side of the 
equation describes a convective transfer of the 
surfactant along the surface and the first term in the 
right-hand side describes the surface diffusion of the 
surfactant. The next two terms define the adsorption 
flux of the substance from the volume phase to the 
surface phase and the last term specifies the inverse 
desorption flux. All coefficients in equation (1) are 
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assumed to be constant. The surface tension at the 
interface σ depends on the concentration of the 
surfactant retained at the interface Γ: Γσ−σ=σ 10 . 

The interfacial forces cause the motion of the 
surface phase, which is described by equation 
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where η(i)
 is the dynamic viscosity of the i-th phase, 

σ 1 is the solutal coefficient of the surface tension. 
When writing this expression, we include in the 
right-hand part only forces that are responsible for 
the surface motion taking no account of the surface 
friction. 

The volumetric inhomogeneity of surfactant 
concentration in the channel causes gravitational 
convection. Viscous stresses at the interface set in 
motion the surface phase, which, in turn transmits 
motion to the other volume phase. At the same time, 
the gravitational convection generates at the 
interface a surface tension gradient, which gives rise 
to an intensive motion of the phase boundary. The 
viscous stresses at the interface change the motion 
patterns in the volume phases. This results in the 
onset of the Marangoni convection, which develops 
on the background of the gravitational convection. 
The competition between these two modes of the 
convective motion is subject to a careful analysis. 

A full system of equations for free convection 
written in terms of dimensionless stream function ψ, 
vortex ϕ and concentration c has the following form: 
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Here Gr and Sc are the Grasshoff and Schmidt 
numbers, determined from the parameters of the 
fluid in the channel, h is the height of the channel, C0 

is the maximal value of the surfactant concentration 
in the initial state, g is gravitational acceleration, β(i), 
ν(i) and D(i) are the coefficients of volumetric 
expansion, kinematic viscosity and diffusion of 
fluids. For units of measurements we take distance h, 

time )1(2 / νh , stream function )1(ν , concentration С0, 
and surface concentration С0h. 

We assume that the external boundaries of the 
channel and the drop are solid and impermeable to 
the surfactant and meet the following boundary 
conditions: 
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The conditions at the interface x = 0 expressed in 
terms of the stream function and vortex are written 
in dimensionless form as 
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Here Ma is the Marangoni number, Kai and Kdi are 
non-dimensional coefficients of adsorption and 

desorption, )1()2(
2 / ηη=η  is the relative dynamic 

viscosity of the drop. The condition for a vortex at 
the drop surface is derived from the tangential stress 
balance condition. 

Initially, the fluid is assumed to be in a quiescent 
state (ψ = 0, ϕ = 0), and distribution of the 
surfactant in the channel is specified by a horizontal 
concentration gradient as follows: 
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(10)

Such distribution suggests that at the initial moment 
of time the surfactant in the drop and at the drop 
surface is lacking. The gravitational convection 
developed with time in the channel carries the 
surfactant onto the drop boundary. Accumulation of 
the surfactant at the drop surface leads to generation 
of the surface tension gradient initiating the 
Marangoni convection. 

The non-stationary boundary value problem 
(3)-(10) was solved for two regions by the finite 
difference method on the 40×40 and 200×40 square 
meshes using the implicit Crank-Nicolson scheme. 
The solution to the Poisson equation was found by 
the subsequent upper relaxation method.  



4 Results of numerical simulation 
Of considerable practical interest are the systems, 

in which the Schmidt number has a high value 

( 310~Sc ). In this case, transport of the surfactant 
through the fluid is realized by convective motion. 
Surfactant transfer between the liquid drop and the 
surrounding fluid occurs through the surface phase 
and is controlled by adsorption-desorption 
mechanism. Since the characteristic times of 
adsorption and desorption are much shorter than the 
diffusion time, the dimensionless coefficients Kai 

and Kdi are also large (~105 – 106). Because of this, 
numerical realization of conditions (8)-(9) poses 
certain difficulties, which can be overcome by 
making use of an ultra-fine grid along the horizontal 
coordinate. In view of the fact that equilibrium 
between the surface phase and the adjacent regions 
of the volumetric phases is established rapidly 
compared to the diffusion time, the right-hand sides 
of equations (8)-(9) are assumed to be equal to zero. 
Then, the condition in the channel is written as 

0/)1( =∂∂ xc , (11)

which means that absorption of the surfactant by the 
surface practically does no affect the diffusion 
transfer of the surfactant in the channel. For the 
drop, we cannot express condition (9) in the form of 
(11), which inhibits the access of the surfactant to 
the drop. Therefore condition (9) is written as 

22
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Intensity of the fluid motion in the channel and in 
the drop is defined by the values of the Grasshoff 
and Marangoni numbers; a necessary condition for 
the onset of the oscillatory mode of solutal 
convection is GrMa >> . 

The structure of the convective motion has been 
investigated for two liquids – water-benzene with 
ethanol  (surfactant)  initially  placed in the water 

phase. The parameters of this system have the 
following values: η2 = 0.3, ν2 = 0.2, β 2 = 1.1 and 
D2 = 1.4. Fig. 4 shows the dependence of the flow 
intensity in the channel on time for the following 
values of parameters: Gr = 400, Ma = 108, B = 0.1, 
Sc = Scs = 103, Ka1 = 105, Kd1 = 2⋅106 , Ka2 =3⋅105 
and Kd2 = 106. 

Periodicity of the outbursts of the Marangoni 
convection is practically independent of the drop 
properties, but their duration differs markedly. 
Intensity of motion in the drop is by an order of 
magnitude smaller than intensity of the channel 
motion. 

 

 

Figure 4. Time dependence of maximal and minimal 
values of stream function in the channel for η2 = 0.3. 
 
 

The flow structures and surfactant distributions 
before the first outburst of the Marangoni convection 
(t = 2.0), at the time of the first and most intensive 
outburst of the Marangoni convection (t = 2.18), at 
the time of the buoyancy convection (t = 3.0) and at 
time t = 15.7, corresponding to the decay of the next 
convection outburst and formation of the intensive 
secondary vortex are shown in Fig. 5. 
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Figure 5. Isolines of the stream function and surfactant concentration 
at t = 2.00 (a), 2.18 (b), 3.00 (c) and 15.7 (d).



An intensive channel Marangoni-driven motion is 
observed in the vicinity of the drop boundary at a 
distance of order of channel height from the drop 
surface. The flow in the drop is rather weak because 

of small dynamic viscosity ( 3.0/ )1()2(
2 =ηη=η ). 

Full time of the first outburst of the Marangoni 
convection is approximately equal to one unit of 
dimensionless time. 

The next outbursts of the Marangoni convection 
have smaller amplitudes but longer duration. The 
Marangoni convection generates a rather intensive 
vortex with the opposite sign. At large times a 
vertical gradient of surfactant concentration is 
generated in the channel, and the global advective 
flow ceases. It is succeeded by the gravitational 
convection at the drop surface, which tends to 
restore a stable stratification of the surfactant. With 
the appearance of the concentration gradient at the 
drop surface the Marangoni convection once again 
stirs the fluid. Convective oscillations will continue 
until the fluid in the channel is completely stirred. 

The period of the established outbursts of the 
Marangoni convection closely depended on the 
Grasshoff number as far as just the gravitational 
convection carried surfactant to the drop interface. 
This relationship is represented in Fig. 6, where the 
Grasshoff number is defined by the initial surfactant 
concentration gradient. 

 

 
 
Figure 6: Variation of the dimensionless auto- 
oscillations period with the Grasshoff number. 

5 Conclusion 
Concentration convective motion in a rectangular 

horizontal channel, containing a drop of insoluble 
liquid was numerically simulated. The model of 
adsorption-desorption surfactant transfer through 
the interface with formation of surface phase were 
elaborated. It was found that for large Schmidt 
numbers (~103) in the cavity with non-homogeneous 
surfactant distribution, convective auto-oscillations, 
caused by the interaction of bouncy-driven 
convection and Marangoni-driven convection, might 
appear in this model. Volumetric distribution of the 
surfactant concentration at different oscillation time 
points qualitatively coincide with the experimental 
results. 
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