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Abstract
We study the reaction N2O + H2 catalyzed on an

Ir(110) surface by means of Monte Carlo (MC) sim-
ulations, focusing our work on the temporal evolu-
tion of the system. The bifurcation diagram of the
model, which represents the surface density of ad-
sorbed species as a function of a parameter, shows three
distinct regions: an oscillatory region, which exhibits
P1 (period-1, one maximum) oscillations, between two
stable steady regions. Results obtained are in good
agreement with experiments conducted in the reaction.
At a later stage and to analyze the stability of the ob-
served P1 oscillations, we apply harmonic disturbances
on the MC model. To do this we perturb the P1 au-
tonomous oscillations by periodic modulation of the
partial pressure of one of the reactants and different
dynamic regimes can be observed by varying the am-
plitude and frequency of the disturbance, whose values
are used to control the behavior of the system. From
the perturbed MC model interesting conclusions are
drawn: when the external frequency is a half-integer of
the natural frequency the oscillatory behavior becomes
aperiodic and quasiperiodic.

Key words
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1 Introduction
Nitrogen oxides are currently the most important

gaseous pollutants emitted by automobile and station-
ary industries and they participate in cyclic reactions
that lead to ozone destruction. The catalytic reduc-

tion of NO (nitric oxide) by different reducing agents
as CO and H2, has been the subject of many studies
due to its relevance in the issues of improvement in
the quality of the air. However, less attention has re-
ceived the study of the reduction of N2O (nitrous ox-
ide), although it is an important greenhouse gas and
becomes the dominant gas in the destruction of ozone
[Ravishankara, 2009]. That is why it is necessary to
supply to the industries of catalytic processes that di-
minish the nitrous oxide emitted in the atmosphere. In
addition, the interest in N2O reduction is not only prac-
tical but also theoretical. Catalytic systems are sys-
tems of many particles far from thermodynamic equi-
librium, in which one can see a great variety of non-
linear phenomena like kinetic phase transitions, oscil-
lations, chaos or the formation of spatio-temporal pat-
terns. Hysteresis and bistability have also been ob-
served when external control parameters of the reaction
(partial pressures or temperature) vary.

Autonomous isothermal oscillations in the reaction
rates of the reaction N2O + H2 on the Ir(110) sur-
face were observed experimentally for the first time
by Carabineiro and Nieuwenhuys [Carabineiro and
Nieuwenhuys, 2001] under ultra-high vacuum condi-
tions. The products of the reaction are N2 and H2O.
The rate oscillations are found in a narrow range of
temperature between 460 and 464 K, for ratios between
partial pressures pH2/pN2O close to 1. The period of
the oscillations is nearly 60 seconds. The oscillatory
behavior in this system is special due to the unusual
phase difference in the kinetic oscillations of the re-
action products. So, N2 oscillates in counter-phase
with the reactant N2O, and the maxima of the oscil-
lations of H2O are ”delayed” compared to the maxima
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of the oscillations of N2. Later, Peskov et al. [Peskov,
Slinko, Carabineiro and Nieuwenhuys, 2005] devel-
oped, successfully enough, a mean field (MF) model
that describes the oscillatory behavior experimentally
observed in the reaction. They demonstrated that as
the origin of oscillations as the unusual phase differ-
ence between the oscillations of both reaction products
could be explained on the basis of the character of the
lateral interactions between the adsorbed species.
In the other way, periodic forcing of the kinetics of a

reaction by the variation of some external control pa-
rameter such as, for example, the pressure of one of
the reactants or the temperature of the gas, is one of
the frequently used tools in the study of heterogeneous
catalytic processes [Zhdanov, 2004]. The results ob-
tained in this field refer generally to perturbations of
P1 autonomous oscillations. In experiments focused
on the study of the complex behavior in oscillatory cat-
alytic reactions, the technique of the periodic perturba-
tion is used as for stabilizing P1 oscillations, which are
achieved if both external and internal frequencies co-
incide, as for generating quasiperiodic oscillations or
to control chaos. In this case, one intends to stabilize
the unstable periodic orbits contained in the chaotic at-
tractors of the system [Córdoba, Lemos and Jiménez-
Morales, 2006], and [Krefting, Kaira and Rotermund,
2009]. Another of the goals of applying periodic per-
turbations on a reaction is to see whether these pertur-
bations can be used to improve the performance of the
reaction, for example, increasing the amount of resul-
tant products [Lemos, Córdoba and de la Torre, 2010].
The effect of periodic perturbations on the oscillatory

kinetics of the reaction was analyzed by Lemos and
Córdoba [Lemos and Córdoba, 2008]. These authors
used the MF model of Peskov et al. [Peskov, Slinko,
Carabineiro and Nieuwenhuys, 2005] to illustrate the
stability of the P1 natural oscillations with regard to
periodic perturbations. The goal was focused on the
conversion of P1 natural oscillations to P1 forced os-
cillations with the imposed frequency. For this con-
version, simultaneous periodic perturbations of both
reactant pressures were found to be much more effi-
cient compared to perturbation of one of the pressures.
Quasiperiodic and chaotic states were not observed in
the perturbed model.
The purpose of our study is double. First, we want to

analyze the reaction through Monte Carlo (MC) simu-
lations with special emphasis on the oscillatory behav-
ior. To the best of our knowledge no work has been
reported before for the N2O + H2 on the Ir(110) sur-
face by MC simulations. In general, the study of the
oscillatory behavior of a reaction is useful because the
results of calculations for several models demonstrate
that, for some cases, it is possible to reach a net reac-
tion rate greater and/or better selectivity operating in
an oscillatory regime than in a steady one. After, we
want to show the influence that the periodic forcing of
the pressure of one of the reactants has on the oscil-
latory behavior of the reaction, analyzing the results of

the perturbed model simulated by MC. Periodic forcing
allows obtaining different dynamic regimes of the sys-
tem that can be selected with a suitable adjustment of
the parameters that characterize the perturbation, and
which serve to control the system.

2 Model and Monte Carlo Simulations

The mechanism of the reaction includes the follow-
ing steps: adsorption/desorption of N2O and H2, dis-
sociation of N2O, and formation of H2O. We assume
that the reaction products N2 and H2O are immediately
desorbed after their formation on the catalytic surface.

N2O (g) + V
k1→ N2O (ads) , (1)

N2O (ads)
k−1→ N2O (g) + V , (2)

H2 (g) + 2V
k2→ H (ads) + H (ads) , (3)

H (ads) + H (ads)
k−2→ H2 (g) + 2V , (4)

N2O (ads) k3→ N2 (g) + O (ads) , (5)

O (ads) + 2H (ads) k4→ H2O (g) + 3V , (6)

where (g) indicates the gaseous phase, (ads) denotes
an adsorbed particle on the surface, and V is a va-
cant site on the lattice. N2O and H2 are adsorbed
on different vacant sites: the model assumes as well
that N2O and H2 are adsorbed on separate sublattices.
The adsorption is not competitive. The rate constants
ki (i = ±1,±2, 3, 4) are assumed in the Arrhenius
form:

ki = k0i exp[−
Ei

RT
],

where k0i are the preexponential factors, R is the gas
constant, T denotes the surface temperature, and Ei are
the activation energies of the six elemental processes.

Lateral interactions between adatoms must be intro-
duced into the model to obtain oscillations. It follows
from the analysis of thermal desorption spectra that
oxygen greatly modifies the desorption and dissocia-
tion rates of N2O accelerating them. Accordingly, a
contribution to the activation energy from the depen-
dence of the rate constants k−1 and k3 on the surface
coverage of oxygen is introduced into the model:
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k−1 = k0−1 exp[−
E−1

RT
] exp[

T0

T
e−1nO] =

= k∗−1 exp[
T0

T
e−1nO],

k3 = k03 exp[−
E3

RT
] exp[

T0

T
e3nO] =

= k∗3 exp[
T0

T
e3nO],

with T0 = 460 K, being nO the O coverage. Similar ex-
pressions are collected in [Peskov, Slinko, Carabineiro
and Nieuwenhuys, 2005].
The values of the preexponential factors and activation

energies of various steps of the reaction mechanism
used in the simulations are shown in Table 1. These
values are equal to those of the MF model of Peskov
et al. [Peskov, Slinko, Carabineiro and Nieuwenhuys,
2005]. Those were selected so that they produce the
most similarity between the solutions of the MF model
and the experimental data. At T = T0 = 460 K, being
the gas constant R equal to 1.986 cal K−1 mol−1, the
values of the parameters of the model are:

Reaction step, i k0
i (s−1) Ei (cal mol−1)

1 6.2× 104 mbar−1 0

−1 1012 31500

2 8.3× 105 mbar−1 0

−2 2.58× 108 23000

3 5.0× 1022 51700

4 3.04× 106 15000

Table 1. Kinetic parameters used in the model.

k1 = 6.2× 104 s−1 mbar−1 , k∗−1 = 0.001 s−1

k2 = 8.3× 105 s−1 mbar−1 , k−2 = 0.003 s−1

k∗3 = 0.014 s−1 , k4 = 0.225 s−1.

The nonlinearity, which is necessary to obtain oscilla-
tions, is accounted for through the dimensionless pa-
rameters of lateral interactions e−1 and e3. It is also
demonstrated that parameter e−1 practically does not
affect the location and the width of the oscillatory inter-
val for a value of e3 fixed, that is, the critical parameter
for oscillations is e3.

2.1 Algorithm
The surface contains two kinds of sites. The

molecules are adsorbed on the lattice sites and remain
there until they desorb or react, without diffusion. The
H2 are adsorbed on one kind of site and the N2O on a
second type. The gas phase is a mixture of N2O and
H2 molecules with partial pressures pN2O and pH2 , re-
spectively.
The lattice is square. Thus, each node has four near-

est neighbors of a different kind to its and as second
neighbors, four of the same kind. Only a square lat-
tice is considered. The nodes of the lattice are labeled
with two subscripts i and j, so that if (i+ j) is even the
site belongs to the sublattice of O and if (i+ j) is odd,
belongs to the sublattice of H .
The probability of an event is inferred from the rela-

tionship between the rate constants. They are defined
as:

padsN2O = pN2Ok1/Norm

pdesN2O = k−1/Norm

padsH2 = pH2k2/Norm

pdesH2 = k−2/Norm

pdisN2O = k3/Norm

preac = k4/Norm

Norm = pN2Ok1 + k−1 + pH2
k2 + k−2 + k3 + k4.

In our simulations the surface is represented by a lat-
tice L×L, with L = 50, 250, 500, 1000, and 5000 sites
and periodic boundary conditions. We have used lat-
tices of variable size to analyze the possible effect of
finite size on the system. Except for small lattices (L
= 50), significant variations are not observed when the
size of the lattice is changed, hence we have worked
with a lattice 1000×1000. A Monte Carlo step (MCS)
has been given when one performs so many elemen-
tary events as sites of the lattice. In our case, a MCS is
to carry out 106 elementary events so that, on average,
each site will have been visited once.
In the simulations carried out 1000 MCS have been

made in cases in which the system does not oscillate
and the density of adsorbed particles reaches a steady
state, and up to 10000 MCS to study the system in the
region of self-sustained oscillations.
The algorithm simulating each elementary event ac-

cording to the proposed mechanisms is initiated by se-
lecting a random lattice site:

a) If the site belongs to the sublattice O (i + j,
even) it may occur:
a.1) If it is empty, N2O can be adsorbed.
a.2) If it contains a N2O it can:
a.2.1) to be desorbed or,
a.2.2) to be dissociated. In this case, N2 is des-
orbed immediately and O remains adsorbed.
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Figure 1. Bifurcation diagram for adsorbed species coverages as
a function of the parameter e3 at T = 460 K, pN2O = 10−6

mbar, pH2 = 1.2× 10−6 mbar, and e−1 = 4. The diagram
shows an oscillatory region (dotted lines) between two steady regions
(continuous lines). The system becomes oscillatory if the values of
e3 are between 12.7 and 18.7. The points inside oscillatory region
indicate the time average of oscillation amplitudes for each value of
e3.

a.3) If it contains a O and there are two adjacent
sites H on the H sublattice, the reaction of for-
mation of a molecule H2O can take place. The
molecule formed is immediately desorbed leaving
three vacant sites.
b) If the site belongs to the sublattice H (i+j, odd)
it may occur:
b.1) If it is empty and there is at least one vacancy
among the nearest neighbors on the sublattice of
H , then a molecule H2 can be adsorbed, being dis-
sociated in two adsorbed H , each occupying the
above empty positions.
b.2) If it contains a H and there is at least another
H between its nearest neighbors, then it can be
combined to form a molecule H2 that automati-
cally desorbs leaving two empty sites.

The steps of adsorption, desorption, dissociation and
reaction will be viable on the sites chosen according to
the probabilities of each processes defined above.

2.2 Results of the Autonomous Model
At T = 460 K, pN2O = 10−6 mbar, pH2 = 1.2×10−6

mbar, and e−1 = 4, the results of MC simulations show
that for certain values of the lateral interaction param-
eter e3, constant values for the densities of adsorbed
particles are reached. But there is a range of values of
e3 where self-sustained oscillations appear. These as-
pects are reflected in the bifurcation diagram of Fig-
ure 1 showing the three distinct regions: two stable
steady regions (continuous lines) on both sides of an
intermediate region where the system exhibits P1 self-
sustained oscillations (dotted lines). This last region is
represented by the average value of the amplitude of
the oscillation.
A first result that emerges from our study is that the os-
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Figure 2. Details of the bifurcation diagram corresponding to Fig-
ure 1 for N2O coverage at T = 460 K, pN2O = 10−6 mbar,
pH2 = 1.2× 10−6 mbar, and e−1 = 4. Dotted lines indicate
the time average of oscillation amplitudes. On top and below dotted
lines maximal and minimal amplitudes are shown, respectively.

cillatory region is wider (the oscillations are observed
for values of e3 ranging between 12.7 and 18.7) than
that obtained by Peskov et al. [Peskov, Slinko, Cara-
bineiro and Nieuwenhuys, 2005] with the mean field
equations (here, the oscillatory region is observed for
values of e3 between 9.935 and 10.958).
Details of the Figure 1 are shown in Figure 2. This

one shows the bifurcation diagram of N2O coverage
in dependence on the parameter e3 at values given in
Figure 1. Dotted lines indicate the time average of os-
cillation amplitudes. On top and below these dotted
lines maximal and minimal oscillation amplitudes are
represented, respectively.
The bifurcation diagram of the model allows us to see

two bifurcations points. Between these points the sta-
ble limit cycle solutions of the system exist. The first
critical point is obtained at e3 = ec13 = 12.7, and a bro-
ken phase transition can be observed between a steady
behavior and an oscillatory one. A critical exponent
a1, obtained by linear regression from the expression
nN2O = (e3 − ec13 )a1 , being nN2O the N2O coverage
on surface, takes the value 0.0535±0.0024. The second
critical point is e3 = ec23 = 18.7, and it corresponds to
a soft phase transition with a critical exponent a2 prac-
tically null.
An oscillatory state that shows the temporal evolu-

tion of the density of adsorbed particles, for e3 = 13, is
shown in Figure 3. The oscillation period is 74 MCS.
The model also shows the results that indicate that the
signals of N2O and H oscillate practically in counter-
phase in relation to that of O, and the maxima of the
signals of N2O are slightly delayed compared with the
maxima of oscillations of H . The mechanism of the
oscillations can be explained as follows: starting from
a clean surface, hydrogen immediately occupies all the
sites in the sublattice and, therefore, it plays a minor
role in the appearance of oscillations. The concentra-
tion of N2O on the surface keeps growing. Due to
the dissociation of N2O, the concentration of adsorbed
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Figure 3. Time series of P1 (period-1, one maximum) autonomous
oscillations of the adsorbed species coverages at T = 460 K,
pN2O = 10−6 mbar, pH2 = 1.2× 10−6 mbar, e−1 = 4
and e3 = 13.

oxygen increases as well. Oxygen accelerates disso-
ciation of N2O and surface concentration decreases
drastically, while the oxygen coverage increases in an
autocatalytic way. However, concentration of surface
oxygen begins to diminish because of its reaction with
hydrogen. The decrease of the concentration of oxy-
gen leads to an increase of the surface concentration of
N2O. As a result of this process the dissociation rate of
N2O increases again, leading to an increase of the sur-
face concentration of oxygen. Oxygen accelerates the
dissociation rate of N2O again and the cycle of oscilla-
tions begins anew. The rate oscillations for the reaction
are related to periodic transitions between O-rich and
O-poor surfaces.
The methods more efficiently applied to modeling the

oscillations of catalytic chemical reactions are the ki-
netic equations obtained by MF approximations and
simulations by MC method [Zhdanov, 2002].
MF equations obtained by direct application of mass-

action law have very limited validity, because ignore
the non-ideality of the adsorbed layer, considering the
surface as homogeneous and without lattice structure,
do not take into account correlations, assuming that the
particles are randomly distributed on the surface, nor
the elementary reaction mechanism. To resolve certain
problems, it is common to obtain the MF equations in a
simple approximation, approximation of sites, obtained
from an extension of mass-action law and to incorpo-
rate the non-ideal factors (e. g., lateral interactions be-
tween adsorbed particles) via the dependence of the ac-
tivation energies on coverage for some of the elemen-
tary steps [Slinko and Jaeger, 1994]. Model of Peskov
et al. [Peskov, Slinko, Carabineiro and Nieuwenhuys,
2005] has been done at this last level: oscillatory kinet-
ics is related to adsorbate-adsorbate lateral interactions.
These generic approaches are reasonable in many cases
and especially in situations in which rate processes
on the adsorbed layer are not accompanied, for exam-
ple, by adsorbate-induced surface restructuring. This is
thus because experimental studies indicate that the ki-

netic oscillations often result from the interplay of rapid
chemical reaction steps and relatively slow comple-
mentary processes such as adsorbate-induced surface
restructuring and, therefore, oscillations are observed
in a relatively small range of parameters of the system.
Thus, strictly speaking, the conventional MF equations
used to describe oscillations on homogeneous surfaces
are not applicable on heterogeneous surfaces.
The difficulty of introducing into the kinetic equations

some specific characteristics of both, the catalytic sur-
face considered (restructuring of the catalytic surface,
specific distribution of active sites, different adsorption
levels, etc.) as well the particles involved in the reac-
tive processes (adsorbate-adsorbate lateral interactions,
mobility of the particles, etc.) can be avoided by us-
ing an alternative MC algorithm. The implementation
of this method does not need to make approaches on
the distribution of adsorbed particles on the surface and
facilitates the knowledge of it. In particular, the MC
method is indispensable for simulations of oscillatory
patterns on the nanometre scale. On the other hand, due
to computational limitations, it cannot be used in the
situations where the range of the rate constants is very
wide. For example, MC simulations of patterns on the
micrometre or millimetre scales are still a challenge. In
these cases, the MF theory is often more suitable. Thus,
the MF and MC approaches are complementary.
It is convenient to notice, therefore, that qualitative

agreement of the MC model with that predicted by us-
ing the MF model of Peskov et al. [Peskov, Slinko,
Carabineiro and Nieuwenhuys, 2005], and earlier ex-
perimentally observed by Carabineiro and Nieuwen-
huys [Carabineiro and Nieuwenhuys, 2001] is, of
course, not a merit of the MC model, because physi-
cally the model was based on the ideas borrowed from
the MF model, which in turn were based on the ex-
perimental data, and accordingly the agreement with
experiment is neither surprising. However, the spatial
structures simulated by MC are novel and instructive.
In this sense, MC method is superior to MF one, be-
cause it allows us to incorporate into a model all the
essential ingredients of the MF model and in addition
to explore others non-ideal factors that are difficult to
treat analytically.

2.3 Distribution of the Adsorbed Species on the
Surface

MC models allow to follow the temporal and spatial
evolution of the system, a possibility that MF models
do not offer. Although the aim of our study is to ana-
lyze the temporal evolution of the system without stop-
ping to observe the distribution of the adsorbed species
on the surface, in other problems the information that
is extracted from the spatial structures is the key to
understanding the behavior of the reaction. Thus, to
complete our study, we will include snapshots of a
(100×100) fragment of the (1000×1000) lattice when
the system exhibits oscillatory behavior. To do this,
we choose the state depicted in Figure 3. This state
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Figure 4. Time series of P1 (period-1, one maximum) autonomous
oscillations of H , N2O and O coverages at T = 460 K, pN2O =
10−6 mbar, pH2 = 1.2 × 10−6 mbar, e−1 = 4 and
e3 = 13. The vertical lines indicates the instants at which to per-
form snapshots of the surface.

is observed in more detail in Figure 4 where the verti-
cal lines indicate the instants when snapshots are made:
1) an instant in which the N2O coverage is maximum;
2) an instant in which the N2O coverage is between
the maximum and minimum; 3) an instant in which the
N2O coverage is minimum; 4) an instant in which the
N2O coverage is between the minimum and maximum.
Surface snapshots were generated during the MC run

shown in Figure 4 and are represented in Figure 5. Pic-
tures of the spatial distributions of the adsorbed N2O
(black circles), O (grey circles), H (×) and vacant sites
(blanks) are shown for four different times when the
N2O coverage is: maximum (MCS = 3721); between
the maximum and minimum (MCS = 3737); minimum
(MCS = 3753); and between minimum and maximum
(MCS = 3775). Random distributions, without island
formation, were obtained in all cases.

2.4 Route to Chaos
In a subsequent study, using the same experimental

procedure, Carabineiro et al. [Carabineiro, van Noort
and Nieuwenhuys, 2003] obtained an oscillatory be-
havior of the reaction at constant temperature and tried
to alter this behavior. So, once the oscillations started,
they showed that an attempt to change the pressure of
H2 involved the loss of the oscillation. In contrast,
small variations in the pressure of N2O caused changes
in the oscillatory behavior. Thus, from a P1 oscillatory
regime, they observed a number of duplications of pe-
riod that ended in an aperiodic regime. These duplica-
tions of period observed for extremely small pressure
differences indicated a Feigenbaum route to chaos in
the reaction. Also P3 (period-3, three maxima) oscilla-
tions and P5 (period-5, five maxima) oscillations were
observed. Pn indicates oscillations of period-n with n-
maxima by period.
Our next step was to introduce into the MC simula-

tion model the experimental values of pressures and
temperature provided by Carabineiro et al. [Cara-

Figure 5. Snapshots of a (100×100) fragment of the (1000×1000)
lattice at four different stages of oscillations of the MC run shown in
the Figure 4. N2O, O, H adsorbed particles and vacant sites corre-
spond to black circles, grey circles,× and blanks, respectively. MCS
= 3721 corresponds to a maximum in fraction of N2O adatoms;
MCS = 3737, between maximum and minimum; MCS = 3753, min-
imum; and, MCS = 3775, between minimum and maximum.

bineiro, van Noort and Nieuwenhuys, 2003] in order
to see if we got a route to chaos or the periodicity
of the oscillations changed. But we did not get any
of those results. It should be noted that in the study
where this behavior appeared [Carabineiro, van Noort
and Nieuwenhuys, 2003], the values of experimental
pressures and temperature were slightly different from
the values that Peskov et al. [Peskov, Slinko, Cara-
bineiro and Nieuwenhuys, 2005] used in their mean-
field model, values that also we use in our MC simula-
tion model.
To gain insight in the oscillatory behavior of the sys-

tem and to see if it exhibits different oscillations to P1
ones or a route to chaos, we proceed in the next section
to disturb the reaction harmonically. As there are ex-
perimental observations showing a route to chaos with
period duplications, as well as P3 and P5 oscillations,
as it is stated above, we expect that the periodic forc-
ing technique allows us to observe chaotic, quasiperi-
odic or periodic with different periodicities behaviors.
If different behaviors are observed, these can be con-
trolled selecting suitable values of the parameters that
characterize this disturbance (amplitude or frequency).

3 Monte Carlo Simulations of the Perturbed
Model

To test the stability of the oscillations found by MC
simulations of the reaction model, we apply a pertur-
bation in the partial pressure of nitrous oxide, using a
sinusoidal function of a single frequency:
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pN2O = (pN2O)0(1 +A sin(2πft)) , (7)

where A and f are the normalized amplitude and fre-
quency of disturbance, respectively, and (pN2O)0 cor-
responds to the partial pressure of N2O used in the au-
tonomous system (without forcing).
To simplify the calculations, we choose the coverage

of oxygen, nO, as the only output variable. Of the 5000
points that comprise each series, we ignored the 904
first to remove the transient regime and with the re-
maining ones we calculate the time average of the oxy-
gen coverage and its fluctuation. We do the analysis of
results on the fluctuation of nO. At this point, we an-
alyzed the time series obtained, finding, among others,
the Fourier transform or the next-maximum map.
Initially we tried to perturb several oscillatory states

like that described above, that is, states at T = 460 K,
(pN2O)0 = 10−6 mbar, pH2 = 1.2 × 10−6 mbar,
e−1 = 4 and e3 = 13, keeping constant the other
parameters listed in Section 2. However, we did not
get interesting results: the perturbations convert P1 au-
tonomous oscillations to P1 forced oscillations which
oscillated to the natural frequency or an external one.
Quasiperiodic and chaotic states were not observed.
These latest results are in agreement with those ob-
tained by us [Lemos and Córdoba, 2008] when we har-
monically perturbed the MF model of Peskov et al.
On the other hand, the series of period doubling,

which result finally in an aperiodic behavior, and P3
and P5 oscillations observed experimentally by Cara-
bineiro et al occurred with an initial pH2/pN2O ratio
of 1.4 at N2O pressure of 106 mbar in the temperature
range between 460 and 464 K.
With these previous results, the most interesting out-

comes were obtained when the partial pressure of H2

was modified.
Figure 6 shows a self-sustained oscillation at T = 460

K, (pN2O)0 = 10−6 mbar, pH2 = 1.4 × 10−6 mbar,
e−1 = 4 and e3 = 13. This state oscillates with a nat-
ural frequency f0 = 0.01221 MCS−1 (period equal
to 82 MCS). Figure 6 shows the temporal evolution
of O coverage at the top, along with its Fourier spec-
trum (in the middle) and next-maximum map (at the
bottom). In the discrete Fourier spectrum the funda-
mental frequency and its harmonics are observed. It is
known that the next-maximum map shows 1, 2, 3,..., or
n points depending on the periodic oscillations are P1,
P2, P3,..., or Pn, respectively, hence P1 oscillations are
represented on the next-maximum map with one point
in Figure 6. This P1 oscillatory state is that which we
seek to disturb.

3.1 Results of the Perturbed Model
We analyze the response of the perturbed system for

four values of the external frequency: f1 = f0 =
0.01221 MCS−1, f2 = 1.5f0 = 0.01831 MCS−1,

Figure 6. Typical time series of autonomous oscillations (with-
out forcing) at T = 460 K, pN2O = 10−6 mbar, pH2 =
1.4 × 10−6 mbar, e−1 = 4 and e3 = 13. This series rep-
resents P1 oscillations of O coverage, as it can be observed in the
Fourier spectrum and the next-maximum map attached. This map
shows one point if the periodic oscillations are P1. The Fourier spec-
trum is discrete with one fundamental frequency, f0 = 0.01221
MCS−1. Its harmonics can also be seen.

f3 = 2f0 = 0.02442 MCS−1, and f4 = 2.5f0 =
0.03052 MCS−1. For each value of f , the normal-
ized amplitude of the disturbance has been varied from
A = 0.1 to A = 1, with a step of 0.1.
The most remarkable results of this sampling are col-

lected in Figures 7, 8, 9 and 10. These figures represent
time series of the forced oscillations of O coverage that
were obtained for four different values of the normal-
ize amplitude (A, rows) and the perturbing frequency
(f, columns) in Figure 7, and its corresponding next-
maximum maps in Figure 8, Poincaré maps, with a time
delay t = 5 MCS, in Figure 9, and Fourier spectra in
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Figure 7. Time series of forced oscillations ofO coverage obtained
at T = 460 K, pN2O = 10−6 mbar, pH2 = 1.4 × 10−6

mbar, e−1 = 4 and e3 = 13, for four different values of
the perturbing normalized amplitude A (rows), and the frequency
f (columns), being f0 = 0.01221 MCS−1. These series
obtained by MC runs of the perturbed model, represent periodic
regimes when f is an integer multiple of f0 (cases f1 = f0
and f3 = 2f0), and quasiperiodic behaviors when f is a half-
integer of f0 (cases f2 = 1.5f0 and f4 = 2.5f0), except for
f2 = 1.5f0 and A = 0.3 that corresponds to a chaotic state.

Figure 10, respectively.
If the external frequency equals to the natural one,

P1 autonomous oscillations are completely stable: the
disturbance does not change the type of oscillation.
Forced oscillations with one-maximum are observed.
Oscillation amplitudes increase as the normalized am-
plitude of the disturbance increases as well. This can
be seen in Figure 7. In this case, P1 forced oscilla-
tions are represented by one point in the next-maximum
maps (Figure 8) or one loop in Poincaré maps (Figure
9). It is also known that the periodic attractors form
closed curves and n loops correspond to the oscilla-
tory state with period-n (Pn). Fourier spectrum (Figure
10) is discrete as corresponds to a periodic oscillation.
The output frequency, fout, is the highest peak. In this
case, external, natural and output frequencies coincide,
f1 = f0 = fout.
When the external frequency doubles the natural fre-

quency (f3 = 2f0), the responses of the system are
P1 forced oscillations, except for A = 0.4 in which
the P1 natural oscillation is transformed into P3 one.
This case can be observed in the next-maximum map
of Figure 8, where the mentioned state is represented
by three points. One of these maxima has a small am-

Figure 8. Next-maximum maps of the forced oscillations ofO cov-
erage shown in Figure 7. P1 and P3 oscillations are represented by
one and three points, respectively. Quasiperiodic and chaotic regimes
are shown through closed and open curves, respectively. Note the
chaotic state obtained for f2 = 1.5f0 and A = 0.3.

Figure 9. Poincaré maps, with a time delay t = 5 MCS, cor-
responding to forced oscillations shown in Figure 7. Multiple loops
can be observed when the perturbed system exhibits quasiperiodic or
chaotic regimes.

plitude compared to the other two and this detail is not
seen clearly in Figure 7. For all normalized amplitudes,
the system responds with an output frequency equal to
the natural one, fout = f0 ̸= f3 as it can be observed
in the Fourier spectra of Figure 10.
Therefore, when the external frequency is an integer

multiple of the natural frequency (cases f1 = f0 and
f3 = 2f0), the responses of the system are P1 oscil-
lations, except for f3 = 2f0 and A = 0.4 in which
the P1 natural oscillation is transformed into P3 one.
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Figure 10. Fourier spectra corresponding to the forced oscillations
shown in Figure 7. The Fourier spectrum is discrete when oscilla-
tions are periodic or quasiperiodic and it is continuous when oscilla-
tions are chaotic. In this case (f2 = 1.5f0 and A = 0.3), the
maximum Lyapunov exponent is 0.003047.

In all these cases the system responds with an output
frequency equal to the natural one.
The most interesting behaviors are observed in cases

where the external frequency is a half-integer of the
natural frequency (cases f2 = 1.5f0 and f4 = 2.5f0).
Thus, for f2 = 1.5f0 and at low disturbance ampli-
tudes, the behavior is quasiperiodic. By increasing the
value of A, the system becomes chaotic (A = 0.3),
and quasiperiodic later. For values of A ≥ 0.7 the
system exhibits P1 forced oscillations with an out-
put frequency that equals the external one, that is,
fout = f2 ̸= f0. The details of the series that repre-
sent chaotic and quasiperiodic regimes can be observed
in Figures 7, 8, 9 and 10. The temporal evolution of
the quasiperiodic state shows a regular pattern, while
the chaotic state is completely aperiodic (Figure 7). In
the next-maximum maps, points place themselves over
the same perfectly defined closed curve represent a
quasiperiodic state, while the chaotic state is shown by
open lines (Figure 8). The Fourier spectrum is discrete
when oscillations are quasiperiodic and it is continu-
ous when oscillations are chaotic (Figure 10). Thus,
the Fourier spectrum corresponding to the quasiperi-
odic case for f2 = 1.5f0 and A = 0.4 shows two fun-
damental frequencies, f1out = 0.00488 MCS−1, and
f2out = 0.00667MCS−1, since, for example, f3out =
0.01155 MCS−1 and f4out = 0.01822 MCS−1 are
expressed as combination of the incommesurable two
fundamental frequencies: f3out = f1out + f2out and

f4out = 2f3out−f1out. Finally, there is no doubt about
the chaotic character of the time series corresponding
to f2 = 1.5f0 and A = 0.3. We have calculated, more-
over, the maximum Lyapunov exponent and it results
0.003047, with positive sign, so confirming the chaotic
nature of that state.
When f4 = 2.5f0, the results are similar to the previ-

ous case, except that does not appear any chaotic state.
Note that in the Fourier spectra, the fundamental fre-
quencies appear at low frequencies and small ampli-
tudes, i. e., on the lower left side of the spectra.
We have seen that with periodic forcing technique,

this is, by means of an harmonic perturbation of pN2O,
different dynamic regimes of the system can be gen-
erated. The emergence of some or other regimes can
be controlled by varying the normalized amplitude A
and frequency f of perturbation. So, for an external
frequency f2 = 1.5f0, a succession of quasiperiodic,
chaotic, quasiperiodic and P1 periodic (the system os-
cillates with the external frequency) states is obtained
when the value of A, which would act as a control pa-
rameter, varies from 0.1 to 1. In the same way, for
f3 = 2f0, a succession of P1, P3 and P1 periodic
states (all oscillate with the natural frequency) is ob-
tained when A varies in the mentioned range. And,
when f4 = 2.5f0, a succession of quasiperiodic and
P1 periodic (this state oscillates with the external fre-
quency) states is obtained. Alternatively, A could be
fixed and then f would be considered as a control pa-
rameter.
It is convenient to remember that several behaviors ob-

served from MC simulations of the perturbed model
can be awaited if one knows the theory of the peri-
odically perturbed oscillatory systems [Scott, 1991].
When forcing happens at low values of the normal-
ized amplitude, these systems usually exhibit a region
of quasiperiodic oscillations. Inside this region are
incrusted a number of islands (the so-called Arnold
tongues) of periodic oscillations that correspond to the
cases in which the ratio between the forced and natural
frequencies, f/f0, is close to an integer or to one sim-
ple fraction (in the practice, only the major tongues can
be located). As the normalized amplitude of the dis-
turbance increases, it is possible sometimes to observe
regular oscillations, which are oscillations modulated
with a frequency significantly smaller than both natu-
ral and external frequencies. The regions where these
periodic oscillations are observed are called synchro-
nization bands between the system and the disturbance.
The wideness of a synchronization band, that is, the
range of frequency where the response of the perturbed
system is periodical for a fixed value of the normalized
amplitude, increases as this increases. Chaotic oscil-
lations can be observed as well when the amplitude of
the disturbance increases; in this case the transition to
chaos takes place by means of the duplication of pe-
riod. Finally, if the normalized amplitude increases, P1
oscillations with the external frequency are observed.
The results that we have obtained are qualitative: a
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complete classification including the Arnold tongues or
other type of regime different of that shown here is out-
side of the aim of this paper because it would require
testing an exhaustive range of values for A and f . Of
course, a systematic variation of A and f will allow
us to draw the kinetic phase diagram of the perturbed
model, which will show the system dynamic states and
their possible bifurcation points.

4 Conclusions
We have developed a model that treats the heteroge-

neous catalytic reaction N2O + H2 on Ir (110) sur-
face using Monte Carlo (MC) simulations. The sur-
face where the reaction takes place is a square lattice
containing, in turn, two sublattices, O sublattice and H
sublattice. The transition probabilities of the different
processes of adsorption, desorption, dissociation and
reaction are chosen in the Arrhenius form and the con-
tributions to the activation energy of the substrate and
the interaction between neighboring adsorbed species
are distinguished. It is shown that lateral interactions
between neighboring adsorbates are the origin of oscil-
latory behavior. The main feedback mechanism lead-
ing to oscillations is the dissociation of N2O to O.
Bifurcation diagram that represents the surface cover-

age of adsorbed species H , N2O and O as a function of
a lateral interaction parameter, shows three clearly de-
fined regions: an oscillatory region between two steady
regions. This diagram is similar to that obtained by
other authors using a model of mean field (MF), al-
though the region where the oscillatory behavior is ob-
served is wider in the MC model than in the MF model.
It also reproduces the observations showing a delay in
the maxima of N2O with respect to those of H . In
any case, the results obtained by MC simulation are in
good agreement with experiments conducted in the re-
action studied. One of the contributions of the study
is that the MC technique allows us to show the surface
distribution of adsorbed species for this reaction in par-
ticular.
To analyze the stability of the P1 (period-1, one max-

imum) oscillations shown and try to reproduce some
of the complex behaviors observed experimentally in
the reaction, we perturb harmonically the MC model.
This allows to obtain different dynamic regimes of the
system, depending on the values of the normalized am-
plitude and the frequency of the perturbation, which
can act as control parameters. This study draws in-
teresting conclusions: a) When the external frequency
equals the natural frequency, the oscillations are com-
pletely stable and do not change the type of periodic-
ity: P1 oscillations remain. However, if the external
frequency doubles the natural frequency, the behavior
remains periodic but, in some cases, the type of period-
icity of oscillations change and the transition from P1
to P3 (period-3, three maxima) oscillations is observed.
b) When the external frequency is a half-integer of the
natural frequency, aperiodic and quasiperiodic behav-

iors can be observed. We did not find the Feigenbaum
route to chaos, although the sweep done in the range
of the perturbing normalized amplitude and frequency
is not accurate enough. But we can say, in view of
the results, that the route to chaos of Ruelle-Takens-
Newhouse is observed in the perturbed MC model: the
chaotic state is obtained by breaking the quasiperiodic
state.
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