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Abstract: Equations describing small free oscillations of a rectilinear elastic beam with a 
rectangular cross section have been obtained within the framework of the linear theory of 
elasticity and solved using the method of integrodifferential relations (IDR). The 
influence of geometry and elastic characteristics on the frequencies and shapes of free 
beam oscillations is studied. It is shown that the longitudinal motions admit two types of 
displacement and internal stress fields. The lateral oscillations obtained are specified by 
two frequency bands, which correspond to different types of the characteristic equation 
roots. Numerical examples of free beam oscillations are presented and discussed.  
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1. INTRODUCTION 

 
The beam theory based on the intuitive hypotheses 
which have been proposed by J. Bernoulli in the end 
of the 17th century (Donnell, 1976) occupies an 
important place among the simplified theories in the 
solid mechanics. In spite of the fact that the beam 
theory is applicable for a wide class of engineering 
problems, it does not take into account the important 
mechanical characteristics of the elastic structures 
like shear and anisotropic properties of the material. 
The qualifying formulae taken into account the 
influence of Poisson's ratio have been proposed for 
static (Timoshenko beam, see Timoshenko (1956)) 
and dynamic problems (Rayleigh correction, see 
Rayleigh (1926). Below the approach based on the 
expansions of unknown stress and displacements 
functions with respect to small parameter (the ratio 
of the beam height to its length) is used in order to 
deduce the new equations described the free beam 
vibrations (Kostin and Saurin (2005), Kostin and 
Saurin, (2006 a,b,c)). 

     

 
2. STATEMENT OF THE PROBLEM 

 
Let us consider a plate occupying a rectangular 
region  with a boundary Ω γ . The plate has the 
height h, length l, and a constant thickness (for 
certainty, equal to unity). The boundary γ  is 
assumed to be free of external loads. The stress-
strain state of an isotropic body is described by a 

two-dimensional system of linear elasticity equations 
(Timoshenko and Goodier (1956)): 
 

0, 0;xy xy yx
x yf f

x y x y
τ τ σσ ∂ ∂ ∂∂

+ + = + + =
∂ ∂ ∂ ∂

 (1) 

 

0 0 0 1, ,
2x y xy

u v u v ;
x y y

ε ε ε ⎛ ⎞∂ ∂ ∂ ∂
= = = +⎜∂ ∂ ∂ ∂⎝ ⎠x ⎟  (2) 

 

( ) ( )

( )

0 0

0

1 1, ,

, .
2 2 1

x x y y y

xy
xy

E E
EG

G

xε σ μσ ε σ μσ

τ
ε

μ

= − = −

= =
+

 (3) 

 
The boundary conditions can be written as 
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where xσ , yσ , and xyτ  are components of the stress 

tensor σ ; 0
xε , 0

yε , and 0
xyε  are components of the 

strain tensor 0ε ; u and v are components of the 
displacement vector u; xf  and yf  are components of 
the volume force vector f; xn  and  are the 
components of the unit vector n, which is normal to 
the boundary 

yn

γ ; and E, G, and μ  are the Young’s 



modulus, shear modulus, and Poisson’s ratio, 
respectively. 

We assume that (i) the body can perform small 
elastic oscillations relative to the state of equilibrium 
and (ii) the force vector f is determined by inertial 
forces caused by the motions of internal points of the 
plate: 
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where ρ  is the material density. 
  
3. THE METHOD OF INTEGRODIFFERENCIAL 

RELATIONS 
 
The problem is solved using the method of IDR, 
which basic ideas are described by Kostin and 
Saurin, 2005, Kostin and Saurin, 2006a,b,c. 
According to this approach Hooke’s relations (3) are 
replaced by an integral equation 
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where C is the tensor of elastic moduli 
( ). The components of the stress 
tensor  and displacement vector u are considered 
as unknown functions. The linear elasticity problems 
are solved using the equivalent variation formulation, 
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under differential constraints (1), (2) and boundary 
conditions (4). In order to describe free oscillations 
of the elastic plate we represent the unknown 
components of the stress tensor σ  and displacement 
vector u as expansions in powers of the ratio : /y l
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where ω  is the unknown frequency. In expansion 
(8), the stress component xσ  is a linear function of y. 
The choice of the power of approximations for the 
functions xyτ  and yσ  is determined by the condition 
of nontrivial solutions for equilibrium equations (1). 
Substituting expansions (8) and (9) into Eqs. (1) and 
equating the coefficients at the corresponding powers 

of  to zero, we obtain the following system of 
five differential equations:  
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For the boundary conditions 

( , / 2) ( , / 2) 0y xyx h x hσ τ± = ± =  equilibrium 
equations (10) can be solved with respect to the 
unknown functions , , ,  and 0u 1u 0v 1v (1)

yσ : 
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Then, variational problem (7) is reduced to 
minimization of the functional  in Φ (6), which 
depends only on the four unknown stress functions 

(0)
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xσ , (0)
xyτ , (0)

yσ  and obeys the following 
boundary conditions: 
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Let us analyze in more detail the structure of 
functional Φ . Using expansions of the stress (8) and 
displacement (9) functions, this functional can be 
written in the following form: 
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The condition that the integral in Eq. (13) is zero 
implies that functions  ( ) vanish in the 

region . Therefore, the coefficients of the 
corresponding powers of  in expressions 

iH 1,2,3i =
Ω

/y l (14) 
also vanish everywhere in . Using the finite-
dimensional representation of stresses 

Ω
(8) and 

displacements (9) in terms of unknown functions 
(0)
xσ , (1)

xσ , (0)
xyτ , and (0)

yσ  given by (11), we can 
satisfy only linear coefficients with respect to y in 
Eqs. (14) 
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where 0ω  is a characteristic frequency defined by the 
relation 2

0 /E h2ω ρ= . Equations (15) and (16) form 
a system of ordinary differential equations with 
respect to (0)

xσ , (1)
xσ , (0)

xyτ , and (0)
yσ , which have to 

be solved taking into account boundary conditions 
(12). It should be noted that Eqs. (15) approximately 
describe the tension and compression of the plate 
(longitudinal oscillations), while Eqs. (16) describe 
its bending (lateral oscillations). 
 

4. LONGITUDINAL VIBRATIONS 
 
Equations (15) can be reduced to an ordinary 
differential equation with respect to the unknown 
stress function (0)

xσ :  
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The other unknown stress function (0)
yσ  is found 

from the second equation of system (15). In contrast 
to the classical equation describing longitudinal 
oscillations of a beam in terms of the displacement 
function u, expression (17) contains a parameter λ , 
which nonlinearly depends on the frequency ω  and 
the system parameters μ , h, and 2

0ω . The values of 
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It can be shown that boundary value problem (12), 
(17) has no nontrivial solutions for , while 
for  the solution is 
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The characteristic equation for eigenfrequencies ω  
can be written as 
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This equation has two positive roots ω+  and ω− , 
which can be expressed analytically as functions of 
integer : 0n ≥
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Figure 1 (solid curves) shows the plots of ( )nω±  
calculated for the following parameters: 0 1ω = , 

/10ε π= , and 0.3μ = . The horizontal dashed lines 

indicate the values 1 2 2 2.828ω ω= = ≈  and 

2 2.965ω ω= ≈ . The sloped dashed line represents 
the classical solution for a beam with the same 
parameters. The eigenvalues are determined from 
these plots for the corresponding integers n. It should 
be noted that the behavior of ( )nω−  for the first 
several n was established and explained by Rayleigh. 
 



 

     

 
Fig. 1. Longitudinal eigenfrequencies ω  versus n 

 

Figure 2 presents the shapes of stress eigenfunctions 
(0)
xσ  and (0)

yσ  for the values of parameters indicated 
above. Here, solid curves show the distributions of 

(0)
xσ  for  and , the dashed curve shows 1n = 9n =
(0)
yσ  that corresponds to ω+  for  (the values of 1n =
(0)
yσ  for (1)ω ω−=  are not shown because 
(0) (0)/y xσ σ 1), and the dash–dot curve shows (0)

yσ  

for (9)ω ω−= . An important feature of these 
longitudinal oscillations is that  for the 

lower branch 

(0) (0)/y xσ σ < 0

( )nω−  and  for the upper 
branch 

(0) (0)/y xσ σ > 0
( )nω+ . It is worth also noting that, in the 

system with the indicated parameters, the maximum 
values of (0)

xσ  and (0)
yσ  for the two branches of 

solution (21) at  are almost equal. 9n =
 

 
 

Fig. 2. Longitudinal eigenstresses xσ  and yσ  
 

5. LATERAL VIBRATIONS 
 

Explicitly expressing a stress component (0)
xyτ  from 

system (16) as 
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we obtain a differential equation of the fourth order 
for (1)

xσ : 
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Note that the denominator in expression (22) 
vanished at 
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Fig. 3. Lateral eigenfrequencies ω  and cω  versus n 

 

 
 
Fig. 4. Lateral eigenforms u and v 

 



Kostin, G.V.  and V.V. Saurin (2006b) Variational 
approaches in the beam theory. Mechanics of 
Solids. 41(1). 

The roots  ( ) of the characteristic 
biquadratic equation can be analytically expressed: 
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Kostin, G.V.  and V.V. Saurin (2006c) Free Beam 
Oscillations. Doklady Physics, 51(12), pp. 680–
684. 

Strutt, J.W. (Baron Rayleigh) (1926) Theory of 
sound. V. 1. MacMillan, London.  

Timoshenko, S. (1956) Strength of materials. Pt 1. 
Elementary theory and problems. D. Van 
Nostrand Reinhold, Princenton: 

It is follows from this relation that there are two 
complex conjugate imaginary roots for any 0ω > . 
When 3ω ω< , the two remaining roots are real, 
while for 3ω ω>  they are imaginary. The 
eigenfrequencies ω  are determined using the 
condition of nontrivial solutions for the boundary 
value problem (12), (23).  

Timoshenko, S.P. and J.N. Goodier (1970) Theory of 
elasticity. McGraw, New York. 

Figure 3 (solid curve) shows plots of the 
eigenfrequencies versus n of the first twelve 
eigenmodes for the plate parameters , 1h = 10l = , 

0.3μ = , and 0 1ω = . For comparison, the dashed 
curve shows several lower eigenfrequencies of lateral 
oscillations for a classical beam with the same 
parameters. Figure 4 presents the shapes of the 
displacement eigenfunctions , (dashed 
curve) and  (solid curve) calculated using 
relations 

( , / 2)u x h
( ,0)v x

(9) and (11) with (12)ω ω= . It should be 
noted that the shape of oscillations at 1n =  is 
characterized by bending displacements (shear 
deformations are virtually absent). As n increases, 
the shear component more significantly influences on 
the shape of free oscillations. In particular, the 
function  is positive at . ( , / 2)u x h 12n =
 

5. CONCLUSIONS 
 
Based on the method of integrodifferential relation it 
is shown that there are two different kinds of the 
eigendisplacements and internal eigenstresses for 
longitudinal vibrations of a rectilinear elastic beam. 
For lateral vibrations it is found two frequency zones 
corresponded to different solution types of the 
biquadrate characteristic equation. 
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