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Abstract small parameter of singular perturbation, the phase vec-

We study the limit behavior of the reachable sets to tor z = (z,y) consists of “slow”z € R", and “fast”
singularly perturbed linear dynamic systems with time y € R™ components. An admissible control is by def-
dependent coefEcients under geometric constraints oninition a measurable function(-) such that(t) € U
control. The system data are assumed to be Lipschitzfor almost allt € [0, 7], whereU C R* is a nonvoid
continuous functions of time. The fast component of convex compact.
the phase vector is governed by a strictly stable linear We assume the matrix functiond, ..., G and the
system. It is shown that the reachable sets converge asonvex compactU are Lipschitz continuous with re-
the small parameter of singular perturbation tends to  spect tot. The latter means that the support function
zero, and the rate of convergence&lé: log1/¢). Un- h = Hy of the set is Lipschitz continuous in. The
der an extra assumption pertaining to singularities of matrix D is assumed to be asymptotically stable, i.e.
the boundaries of sets of admissible controls, we £nd Re Spec D < 0, for anyt.
the coefEcient of log 1/¢ in the asymptotic expansion  Denote byD.(T') the reachable set to system (1) at
for the support function of the reachable set. time T, i.e. the set of ends at tiniE of all admissi-
ble trajectories of system (1). We will study the limit
behavior of the seb.(T) ase — 0.

Key words _ _ Under the same assumptions, this issue was addressed
Singularly perturbed linear dynamic control systems, in [Dontchev and Slavov, 1988; Dontchev and Veliov,
reachable sets, asymptotics. 1983], where it was shown that the s@s(T) have

a limit Dy (T") with respect to the Hausdorff metric as
¢ — 0, and the rate of convergence of the reachable

1 Problem Statement _ sets isO(e*), where0 < o < 1 is arbitrary.

The paper concerns the study of the asymptotic behav- |, this paper we succeeded to get an essential re-
ior of the reachable sets to singularly perturbed linear ¢,ament of the results [Dontchev and Slavov, 1988;
control systems. The motions described by such sys-pgntchey and Veliov, 1983]. We proved that the said
tems evolve in the two different time scales: “slow” 56 of convergence of the reachable sets is, in fact,
and “fast” times, and, in a natural way, split into the (. 151/¢). In suitable coordinates the “slow” and
two dynz_imlcs. Note that the system coefEcients vary «qt” state components split, and the limit $&§(7")
slowly with respect to fast-time scale. . is the direct product of the limit reachable sets of the

The purpose of this work is to £nd an asymptotic esti- «gjow” and “fast” subsystems. Each factor in the prod-
mate for the reachable set to singularly pgrturbed linear ¢t is a (topological) manifold with boundary, while
systems, when the small parameter of singular pertur-he productis a manifold with corners. Thus, in the £rst
bations tends to zero. approximation, slow and fast controlled motions are in-

Consider the following singularly perturbed linear dy- dependent. Under an extra assumption that the support
namic system under geometric constraint on control  fynction  of the setl/ is C'*-smooth outside the ori-

gin, we found the exact coeffcient ofog 1/¢ in the
&= Az + By + Fu, (1) asymptotic expansion for the support function of the
ey=Cx+ Dy+Gu, uel, prelimit reachable set. Thus, the estiméte log 1/¢)
for the rate of convergence is sharp. The correction
with a given initial statex(0) = 0, y(0) = 0, and term in the asymptotics turns out to be negative. Geo-
t € [0,T], whereT > 0is £xed. Hereg > O is a metrically, this looks like “rounding off” the corners of



the limit reachable sé®, (7).
The assumption on Lipschitz continuity of the system

coefEcients is essential. There are examples where thauzov, 1973]).

system parameters aredlder continuous with expo-
nent0 < a < 1, while the rate of convergence of the
reachable sets B(¢®).

2 Splitting Dynamic System

Following [Dontchev and Slavov, 1988; Kokotovich,

1984] we can simplify the original problem by us-
1 )

ing gauge transformations.

A B F
(C/s D/€> ,and8 = (G/e) one can perform
a substitutionz Xw, where X is an invertible
2 x 2 block matrix, and we get a new control system

w = Aw + Bu. Here,

A=X"1AX - XX, and B = X 18,

If X is Lipschitz continuous with respect tintiethen

Tikhonov—Levinson theorem (see, e.g., [Kokotovich,
1984; Flatto and Levinson, 1955; Vasilieva and Bu-
The asymptotics we are looking for
is, in fact, rather crude. Its remainders are of order
o(elog 1/¢) so that an error of ordeD(¢) is negligi-
ble.

The direct computations show that the matrix coef£-
cients of systems (1), and (2) are related by

A=A-BDC, D=D,
F=F—-BD'G, G=0G.

In the next section, we state our main results in terms
of the original system (1), while, in the proofs, the sys-
tem splitting is heavily used.

3 Asymptotics of Support Functions to Reachable
Sets
Denote byH, (¢, n) the support function of the reach-
able seD.(T') to system (1), where > 0, and¢, n are
dual to the phase variablesy. De£ne the function

such a transformation does not have an essential inau-

ence on the behavior of the reachable sets, but allows us

to simplify the system matrix so that the Lipschitz con-
tinuity and stability of the corresponding system coef-
£cients are preserved.

We aim at reducing the system matrix to a block-
A

0 D/e
fast variables. Suffce it to do an approximate reduc-
tion, so that the block3 and C are O(e), because
this gives us approximate reachable sBtgT') with
the same orde® (<) of precision.

By using the lower-triangular transformatiaki

1 0
-D71C1

C = s%(pflc) +eD'C(A— BD7IC) = O(e).

diagonal form2l = , to separate slow and

) , We obtain a new block' /e, where

Note that the Lipschitz continuity implies that the
derivative%(D‘lc) = O(1) is bounded. Simi-

larly, by applying the upper-triangular transformation
Y — 1eBD!
—\0 1

Then, we arrive at the split case:

, one can ensure thd@ = O(e).

izﬁx—l—ﬁu,

.= ~ (2)
ey =Dy+ Gu, uel,

where all matrices and the convex complare Lips-
chitz continuous with respect to time, ahdis a stable
matrix at each time instant.

T ~ ~
Ho(&n):/ he(F(t)*®(T,t)*€) dt +

0
+ / he(G(TY*eP Tty dt,  (3)
0

where the functior is the fundamental matrix for the
linear system

i=(A—-BD'CO)z, 4)
5: & — C*D* 'y, andh = h, is the support function
of the setU = U, of controls. The functiorHj is, in
fact, the support function for the limit reachable set

Do(T) = lim D.(T).

e—0

Theorem 1. Let H.(¢,n) be the support functions of
the reachable set®_(T') to system (1), thedl (£, n)
convergeH,(&,n) uniformly on compacts as — 0.
Moreover, we have the asymptotic equivalence:

He (&)= Ho(§,n)+0(elog 1/e(|¢|+[nl)) ase — 0.

In otherwordsdy (D., Do) = O(elogl/e), whered
is the Hausdorff metric.

The idea underlying the proof goes back at least to
[Dontchev and Veliov, 1983], and, basically, says that
the reachable set to a linear control system can be de-
composed in accordance with the decomposition of the
spectrum of the system matrix into stable, unstable, and

The study of the asymptotic behavior of the reachable neutral components. Each composing part is formed
setD.(T) for the split system (2) is to a large extent by using controls supported on non-overlapping time
equivalent to the original problem related to system (1). intervals. In our case, there are just two spectral com-
More precisely, the reachable sets to systems (1) andponents: the neutral one corresponding to “slow” vari-
(2) coincide up to an error of ordér(c). This follows ables, and the stable one corresponding to “fast” vari-
immediately from the stability oD and the classical ables. We divide the time intervfd, T'] into the two



subintervals0,7 — 4] and [T — 6, T], whereé is a where

small positive parameter. The controls supported on -

the “long” interval are responsible for the “slow” part ¢ (¢ )= L {Av <ﬁ(T)*g, 0h> (n) — h(F(T)*€)|,
of the reachable set, while the controls supported on the A v

“short” interval form the “fast” part of it. The proper , _ A(n) is the absolute value of the £rst Lyapunov
choice of¢ is crucial for the accuracy of approxima- exponent of the function +— e2(T) "ty (this is the

tion. By choosing a smalf > 0 suchtha® — 0and  oqulus of the real part of an eigenvalue B{T)),
25{-1; o0 ase — O_, we get an approximation to the 7 _ ¢ — C(T)*D(T)*'n, and ﬁ(T) — F(T) -
o(T"). The main difference of the present paper B(T)D(T)~1G(T).

with [Dontchev and Slavov, 1988] stems from the £nal

choiced ~ elog 1/¢ instead of§ ~ . Note that the coefcient(¢,n) of clog i in the
Our main asymptotic result consists in £nding the re- asymptotic expansion (5) is nonpositive. Indeed,
mainder in the previous theorem in a more precise form , = 0h -

c(&,n)elogl/e+o(clogl/e). We can do this under an <<’_%(U)> g- h(¢) forany¢ and_v 70, .and the aver-

extra assumption that the support functionof the set ~ @ding operation preserves the inequality.

Ur of controls isC*-smooth outside the origin. Denote  proof. Consider system (2) and divide the proof into

the argument of the function = h7 by ¢, and consider  the several steps.

the average Decomposition of the time intervalFirst, we defne

o * o7 an optimal value ofé = d(n,e) by the condition

AV () () = — 8—(G(T)*eD(T)*tn) dt. [P 2q = &ln]. ,| - | stands for an arbitrary
v TJo OV norm. Of coursej depends on the choice of the norm,
The limit Av(f) = lim Av,(f) does exist for ~ butnotessentially: for any norm
any homogeneous of zero degree functiprwhich 1 1
is continuous for anw # 0. Indeed, the function 0~ yelog— ase —0.

o(t) = G(T)*eP ™) "ty has the form of a vector-valued

. . Integration over the “long” interval.In what follows,
quasipolynomial, and, therefore,

we rely on the Lipschitz inequality
_ _(Reny,n iwt (Rext, N
O(1) = TN D e Mau + o(eTEVT), h(C+0) —h(O)] < €16

where X is an eigenvalue of the matriR(T), N + 1 for the support functiork of the setU. The inequality
is the maximal size of the corresponding Jordan block, is immediately implied by the uniform bound| < C
sum is taken over all rea} such that R& + iw is an foranyx € U. In particular,

eigenvalue ofD(T"), anda,, is a time-independent vec-

tor. Since the functiorf is homogeneous of zero de- ’/ht(C(t) +0(t))dt — /ht(((t))dt’ <
gree, we have -

sc/wmm, (©)

1 /7 where ¢, 6 are arbitrary integrable vector functions.
— / f(po(t)) dt + o(1), Consider the support functioH. to the reachable set
0 D.(T) to the split system (2) deEned by

A () =1 [ st -

0

where ¢o(t) = > e™ta, is a trigonometric poly- T 1
nomial. “Generically”, the trigonometric polynomial  H_(¢,n) :/ht(F(t)*é(T, ) =G ()" U (T, t)n)dt.
¢o(t) is comprised either of one or two harmonics. The 0 €

limit Due to the Lipschitz inequality (6), we have

AV (f) = lim ;/ f(o(t 11 / he(F*(t)®*(T, t)§+ G* ()WL (T, t)n)dt
does exist, since the integrand in (3) is an almost peri- _ / (1)
odic function which can be averaged. —Jo Pa(F7(@7(T,1)8) dt +

_ T-6
Theorem 2. Assume that the support functibn= hr + O(/ 1|\1,;(T, t)n| dt).
of the control seUU; is C'*-smooth outside the origin. 0 €
Then, the support functiof/. (£, ) of the reachable  The remainder
setD.(T) to system (1) has the following asymptotic
representation: R /T_6 1|\I/*(T tynldt =
0 A a

H.(&,m) = Ho(&,m) +c(§,n)elogl/e + 1 [T

+ o(elog 1/=(|¢] + |n])) ase — 0, (5) = O<E/o |WZ(T,t)||n] dt)



can be estimated as follows. We have

UH(T,t) = U (T — 6,t)U*(T, T — §), and
VT, T —d0)n=0(e)nl.

2
Indeed W’ (T, T—6)n=eD(T)*5/€n+O(%e

1
—ad/e = Ce <10g2 E> EB

ePI)8/ey — O(e)|n|, whereC and 3 are positive
constants. Therefore,

—e ),

o(g), while

2
and 6—e
g

T—6
| 1w = sl an.
0

T—06
|WX(T — 4,t)| dt is bounded, be-

cause it can be estimated via an integral of the form

T*(g 1 o0
/ e Y dr < - / e “=dr
0 €Jo

Thus, we conclude thdt= O(e|n|), and

The mtegral—

1

3

1
o

T—6
IOT—fS:/O hi(F*(t)®*(T,t)§) dt + O(eln]). (7)

Since we do not need a greater precision than
o(elog 1), this estimate is wholly satisfactory.
Integration over the “short” interval The integral over
the complementary interval

T
=
T—

is equal to

T

he(F™(t)

(T, t)f-l—lG*(t)
5 3

(T, t)n) dt

T—t

hy(F*(T)E + EG*(T)eD(T)* :
&

n)dt +

+ O(8°[¢]) + O(eln)). (8)
Indeed, £rst we have
1 T
[ e - e g = o),
€ Jr—s
H(Tt).
Second, we have to take into account that
T
f(t)dt| = O(6%)
T—6

if f is a Lipschitz function such that(7") = 0. This
allows us to substituté™ (T") for F*(¢)®*(T,t), and
we obtain that

T

17 5= T;tﬁ) dt +

T—6

he(F*(T)E + éG*(t)e
+ O(6%[¢]) + O(elnl).

Third, if we substitutez*(T") for G*(¢) in the last inte-
gral, there arises an error of order

T
1

/ -(T -

T-5 €

é/e .
_ 5/ P dr = 0(e),
0

p Jerir 2=

and we arrive at (8).
Estimation formula for the support functioBue to the
estimates (7), (8), we can summarize that

T

Hxanrzﬁ‘ﬁ+ﬁlazlghAF%@@%TJﬁwﬁ

T

1 «T—t
he(F*(T)é+ -G (T)eP ™" "= n) dt

T
+ O(0%(€]) + O(eln).

The right-hand side of (9) can be rewritten as
d/e
,)E) dt+ | h(GH(T)e

T
/mwuma‘
0 0

o/e .
+ /0 (ﬁ(sF*(T)f +GH(T)eP T ) —

~R(G(T)eP ™)) dr — SH(F*(T)€) +
+0(8%¢]) + O(eln|) = K + L+ M — N + J,(10)

D(T)*'r,r]) dr

whereh = hp, andJ = O(52[¢]) 4+ O(eln)) is the re-

T
he(F* ()" (T, 1)€) dt
does not need any furthe(r) transformation. The inte-

é/e B .
/ h(G*(T)eP ™" ™y) dr has the limit
0

mainder. The integrak =

gral L

/ h(G*(T)eP M7y do ase — 0. More precisely,
0
é/e B .
/ R(G* (T)eP D7) dor =
0

= /OOO h(G*(T)eP

because of the de£ning equaljaﬁ*gn\ = ¢|n| for 4,
and the estimate

"Mopydo + O(e),

Lffww=ouw»%Tﬁ+m

for f(t) = eP*'n, whereD is a stable matrix.
Linearization.The asymptotic computation of the inte-
gral

d/e, " _ *
M:/ (h(sF*f +G*eP )~ h(G*eP Tﬁ)) dr
0

is the heart of the proof. The idea is to treat the term

eF*¢ in the argument of the integrand of (3) as a small

perturbation of7*e” 7y, and linearize the difference:
7(€F*§+G* D*r ) B(G*eD*Tn) —

<F £ — (G* bt )> + remainder



stand  for
Unfortunately,

Here, the  notations F,G,D
F(T),G(T),D(T), respectively.

oh . . . .

90 is discontinuous and even unde£ned at the origin.
()

Therefore, in order to use the linearization, we have

to make sure thatG*eP 75 is much greater than
eF*¢. Certainly, e F*¢ = O(e) is small. Still the
term G*e”” 71y can be very small at some pointsof
the interval of integratior0, §/c]. We show that the
interval [0, § /] can be divided into two subsets such
that on the one subset the teife” 71 is relatively
large, while the other part has a relatively small

Lebesgue measure. Before we proceed let us consider

a trivial case. If the function — G*(T)ePT) 7y is
identically zero in[0,6/¢], then, as we can see from
(10), the integral\/ is simply equal taV:

é/e B . B .
M :/ (h(sF*§ + G P Ty) — R(GFeP Tn)) dr
0
= Sh(F*¢).
In what follows we assume that the function
G*(T)eP (™) 7y is not identically zero.

“Bad” and “good” time instants. Denote A,
A(n,e) :=[0,d/e]. This is an interval of length

1
l. = length(A.) =d/e ~ A log1/e.

Let us divide the interval of integratiad, into the two
subsetsS. = S(n,e) = {r € A. : |G* P Ty >
elog1/e}, andS. = S(n,e) deEned by the opposite
inequality.

‘We will show that the reduced Lebesgue measure M=

A(S.) = A(S.)/A(A.) of the setS. is o(1). For this

purpose, we reduce the problem to another one pertain-

ing to quasiperiodic functions.
Clearly, the conditiofG*eP ™n| < elog 1/ can be
rewritten in notations (3) as

|oo(T) + &1(7)] < eATTLNslog 1/e, (12)
wheregy(7) = 3 e“7a, is a trigonometric polyno-
mial, while ¢, (7) = O(1/7) asT — co. One can get
rid of the term¢, as follows. If one removes a rela-
tively short interval (the reduced measure of which is
o(1)), e.9.,[0,1%/%], from A., then condition (11) re-
duces to

1
|do ()| < eATT—Nslog 1/e +0(1),

whereo(1) = O(1/log"/?(1/¢)). Itis enough to show
that the reduced Lebesgue meas\(e.) of the set

1
o ={1 €A : |po(7)| < eATT—Nelog 1/e + o(1)},

which is asymptotically equivalent ta(S. ), iso(1) as
e — 0. Now, we £x an arbitrary small > 0 and split
the seto. = o U ¢ into two subsets, where.

{r € 0. : 7 € [I¥? (1 — k)l]} is the intersection

of . with the “long” interval [13/2, (1 — k)], while
ol ={r € 0. : 7 € [(1 — K)l,l.]} is contained
in the “short” interval[(1 — k)l., l.]. The maximum of
AN in the “long” interval [12/2, (1 — k)i.] is less
thane*~1. Therefore, forr € o/,

1
eATT—Nslog 1/e+0(1) <e®logl/e +o(1) = o(1),
and the set. is contained in the set

ol' ={7 € Az : |¢o(7)| < o(1)},

which is de£ned via the quasiperiodic function We
know that\(o.) < A(a?) 4+ A(c”"), whereA(c!) < k.

€

The reduced Lebesgue measwgr.’) can be esti-
mated by using averaging:

Averaging quasiperiodic setsThe functiongg is de-
£ned as follows. We have an analytic functiénand

a dense straight winding on a tords The function
¢o is the restriction off on the winding. If we £x any
numbera > 0, then the reduced measure of the set
{r € A. : |¢o(t)| < «a} tends to the canonical Haar
measure of the seftt € 7 : |¥(¢)| < a} C 7T as

e — 0. Since the seft € 7 : ¥(t) = 0} is an analytic
hypersurface ir7, its Haar measure is zero. This im-
plies that\(¢”") = o(1) ase — 0, and the same is true
for A\(o.).

Asymptotic form of integral/. Now we come back to
the integralM from (10):

(H(EF*E + G*eD*Tn) — ﬁ(G*eD*Tn)) dr
S(n,e)

+ / (B(EF*E + G*eD*Tn) — B(G*eD*Tn)) dr
S(n.¢)

= Il(é‘) + 12(5).

We know now that the vectoesF*¢ andG*eP 7y on
S(n,e) have different orders of magnitudeF*¢ =
O(e), while |G*eP"™y| > clogl/e. Therefore,
v(A) = XeF*¢ 4+ G*eP "y £ 0 for all A € [0,1].

Then, in view of the absolute continuity @f(v(\)),
we have

heF*¢ 4+ G*eP ™) — h(G eP ™) =
oh

/01 <5F*§, (%(U(A))> A

—e(Pe GG +olele), (1)

whereo(e) is uniform with respect te- € S(n,¢). In-

deed, the natural domain of the functiftv) = % is

the spherer = {|v| = 1}, becausg is homogeneous
of degred). Sinceh is assumed to b€ on the sphere,
the functionf has a modulus of continuity, so that

|f(@) = f(y)| < w(]z —y|)if 2,y € 0. Now, consider



vectorsz = = = v(\)/|v(\)] in o. By defnition of ;. _ _ Oh . D
the setS(n, ) we have that MO = (G ehe = AV(@C (G7e™ ™)), for all ¢ and
n. The latter necessarily means thét) is the support
w(\) — v(0)| Cle] function for the singletorUr = {¢}. The fact that
< =o(1) c(&,m) £ 0 means that the estimate given by Theorem
[0(0)] log1/e 1is sharp, i.e., for somg 7, we have

for any A € [0,
(log1/2) ™" = of

If(zx) — f(20)] < w((log1/e)™t) = o(1) whereC' > 0 does not depend an
The above results can be illustrated by the following

uniformly overr € S(n,e), A € [0,1]. The integral  simple example of a singularly perturbed linear system:
from (12) is equal to

1]. This implies thatjzy — x| ~
1), and, therefore, |H.(&,n) — Ho(&,m)| > Celog1/e,

xr = u
1 “h) —
<eF*§, J f(xA>dA> = (F"€, f(a0)) + v |
0 wherex, y, v are scalars, anfli < 1. This example
+ eO0(w((log 1/e)H)I€]), is also presented in [Dontchev and Slavov, 1988]. An
easy calculation reveals that in this case the difference
what makes transparent the uniformitycgt) in (12). of the support functions of the prelimit and limit reach-

Now, we turn to integrall;(¢). We know that the  able sets equals
Lebesgue measurg(S(n,e)) ~ d/¢, while the mea-

sureA(S(n,e)) iso(d/e). By virtue of (12) we have AH = H.(&,1) — Hy(€,n) =

h * = —2t. _ ) —te/e _ —T/e
Lie) =« / <F*§,%(G*el’ Tn)> dr + o(81€]) €] = Inl(2e e T/%)

S(n.e) provided thattn < 0. Here,t. = 5log%%. Thus,
B .. Oh for £xed¢, n in this range, the differencA H has the
= oAV <F & 5> (n) + o (3lE])- form —2|¢|elog L + Ce+r, whereC'is a constant, and
the remainder is exponentially small as — 0. This

Note that the remaindex() = do(1), whereo(1) may ~ proves again that the estimate in Theorem 1 is sharp.
decrease rather slowly. The rate depends on the Dio-

phantine properties of eigenvalues of matfix
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