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Abstract
We study the limit behavior of the reachable sets to
singularly perturbed linear dynamic systems with time
dependent coef£cients under geometric constraints on
control. The system data are assumed to be Lipschitz
continuous functions of time. The fast component of
the phase vector is governed by a strictly stable linear
system. It is shown that the reachable sets converge as
the small parameterε of singular perturbation tends to
zero, and the rate of convergence isO(ε log 1/ε). Un-
der an extra assumption pertaining to singularities of
the boundaries of sets of admissible controls, we £nd
the coef£cient ofε log 1/ε in the asymptotic expansion
for the support function of the reachable set.
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1 Problem Statement
The paper concerns the study of the asymptotic behav-

ior of the reachable sets to singularly perturbed linear
control systems. The motions described by such sys-
tems evolve in the two different time scales: “slow”
and “fast” times, and, in a natural way, split into the
two dynamics. Note that the system coef£cients vary
slowly with respect to fast-time scale.
The purpose of this work is to £nd an asymptotic esti-

mate for the reachable set to singularly perturbed linear
systems, when the small parameter of singular pertur-
bations tends to zero.
Consider the following singularly perturbed linear dy-

namic system under geometric constraint on control

ẋ = Ax + By + Fu,
εẏ = Cx + Dy + Gu, u ∈ U,

(1)

with a given initial statex(0) = 0, y(0) = 0, and
t ∈ [0, T ], whereT > 0 is £xed. Here,ε > 0 is a

small parameter of singular perturbation, the phase vec-
tor z = (x, y) consists of “slow”x ∈ R

n, and “fast”
y ∈ R

m components. An admissible control is by def-
inition a measurable functionu(·) such thatu(t) ∈ U
for almost allt ∈ [0, T ], whereU ⊂ R

k is a nonvoid
convex compact.
We assume the matrix functionsA, . . . , G and the

convex compactU are Lipschitz continuous with re-
spect tot. The latter means that the support function
h = HU of the setU is Lipschitz continuous int. The
matrix D is assumed to be asymptotically stable, i.e.
Re Spec D < 0, for anyt.
Denote byDε(T ) the reachable set to system (1) at

time T , i.e. the set of ends at timeT of all admissi-
ble trajectories of system (1). We will study the limit
behavior of the setDε(T ) asε → 0.
Under the same assumptions, this issue was addressed

in [Dontchev and Slavov, 1988; Dontchev and Veliov,
1983], where it was shown that the setsDε(T ) have
a limit D0(T ) with respect to the Hausdorff metric as
ε → 0, and the rate of convergence of the reachable
sets isO(εα), where0 < α < 1 is arbitrary.
In this paper we succeeded to get an essential re-

£nement of the results [Dontchev and Slavov, 1988;
Dontchev and Veliov, 1983]. We proved that the said
rate of convergence of the reachable sets is, in fact,
O(ε log 1/ε). In suitable coordinates the “slow” and
“fast” state components split, and the limit setD0(T )
is the direct product of the limit reachable sets of the
“slow” and “fast” subsystems. Each factor in the prod-
uct is a (topological) manifold with boundary, while
the product is a manifold with corners. Thus, in the £rst
approximation, slow and fast controlled motions are in-
dependent. Under an extra assumption that the support
function h of the setU is C1-smooth outside the ori-
gin, we found the exact coef£cient ofε log 1/ε in the
asymptotic expansion for the support function of the
prelimit reachable set. Thus, the estimateO(ε log 1/ε)
for the rate of convergence is sharp. The correction
term in the asymptotics turns out to be negative. Geo-
metrically, this looks like “rounding off” the corners of



the limit reachable setD0(T ).
The assumption on Lipschitz continuity of the system

coef£cients is essential. There are examples where the
system parameters are Hölder continuous with expo-
nent0 < α < 1, while the rate of convergence of the
reachable sets isΩ(εα).

2 Splitting Dynamic System
Following [Dontchev and Slavov, 1988; Kokotovich,

1984] we can simplify the original problem by us-

ing gauge transformations. Ifz =

(
x
y

)
, A =

(
A B

C/ε D/ε

)
, and B =

(
F

G/ε

)
one can perform

a substitutionz = Xw, where X is an invertible
2 × 2 block matrix, and we get a new control system
ẇ = Ãw + B̃u. Here,

Ã = X−1
AX − X−1Ẋ, and B̃ = X−1

B.

If X is Lipschitz continuous with respect timet, then
such a transformation does not have an essential in¤u-
ence on the behavior of the reachable sets, but allows us
to simplify the system matrix so that the Lipschitz con-
tinuity and stability of the corresponding system coef-
£cients are preserved.
We aim at reducing the system matrix to a block-

diagonal formÃ =

(
Ã 0

0 D̃/ε

)
, to separate slow and

fast variables. Suf£ce it to do an approximate reduc-
tion, so that the blocks̃B and C̃ are O(ε), because
this gives us approximate reachable setsDε(T ) with
the same orderO(ε) of precision.
By using the lower-triangular transformationX =(

1 0
−D−1C 1

)
, we obtain a new block̃C/ε, where

C̃ = ε
d

dt
(D−1C) + εD−1C(A − BD−1C) = O(ε).

Note that the Lipschitz continuity implies that the

derivative
d

dt
(D−1C) = O(1) is bounded. Simi-

larly, by applying the upper-triangular transformation

X =

(
1 εBD−1

0 1

)
, one can ensure that̃B = O(ε).

Then, we arrive at the split case:

ẋ = Ãx + F̃ u,

εẏ = D̃y + G̃u, u ∈ U,
(2)

where all matrices and the convex compactU are Lips-
chitz continuous with respect to time, and̃D is a stable
matrix at each time instant.
The study of the asymptotic behavior of the reachable

set D̃ε(T ) for the split system (2) is to a large extent
equivalent to the original problem related to system (1).
More precisely, the reachable sets to systems (1) and
(2) coincide up to an error of orderO(ε). This follows
immediately from the stability of̃D and the classical

Tikhonov–Levinson theorem (see, e.g., [Kokotovich,
1984; Flatto and Levinson, 1955; Vasilieva and Bu-
tuzov, 1973]). The asymptotics we are looking for
is, in fact, rather crude. Its remainders are of order
o(ε log 1/ε) so that an error of orderO(ε) is negligi-
ble.
The direct computations show that the matrix coef£-

cients of systems (1), and (2) are related by

Ã = A − BD−1C, D̃ = D,

F̃ = F − BD−1G, G̃ = G.

In the next section, we state our main results in terms
of the original system (1), while, in the proofs, the sys-
tem splitting is heavily used.

3 Asymptotics of Support Functions to Reachable
Sets

Denote byHε(ξ, η) the support function of the reach-
able setDε(T ) to system (1), whereε > 0, andξ, η are
dual to the phase variablesx, y. De£ne the function

H0(ξ, η) =

∫ T

0

ht(F̃ (t)∗Φ(T, t)∗ξ̃) dt +

+

∫ ∞

0

hT (G(T )∗eD(T )∗tη) dt, (3)

where the functionΦ is the fundamental matrix for the
linear system

ẋ = (A − BD−1C)x, (4)

ξ̃ = ξ − C∗D∗−1η, andh = ht is the support function
of the setU = Ut of controls. The functionH0 is, in
fact, the support function for the limit reachable set

D0(T ) = lim
ε→0

Dε(T ).

Theorem 1. Let Hε(ξ, η) be the support functions of
the reachable setsDε(T ) to system (1), thenHε(ξ, η)
convergeH0(ξ, η) uniformly on compacts asε → 0.
Moreover, we have the asymptotic equivalence:

Hε(ξ, η)=H0(ξ, η)+O(ε log 1/ε(|ξ|+|η|)) asε → 0.

In other words,dH(Dε,D0) = O(ε log 1/ε), wheredH

is the Hausdorff metric.

The idea underlying the proof goes back at least to
[Dontchev and Veliov, 1983], and, basically, says that
the reachable set to a linear control system can be de-
composed in accordance with the decomposition of the
spectrum of the system matrix into stable, unstable, and
neutral components. Each composing part is formed
by using controls supported on non-overlapping time
intervals. In our case, there are just two spectral com-
ponents: the neutral one corresponding to “slow” vari-
ables, and the stable one corresponding to “fast” vari-
ables. We divide the time interval[0, T ] into the two



subintervals[0, T − δ] and [T − δ, T ], whereδ is a
small positive parameter. The controls supported on
the “long” interval are responsible for the “slow” part
of the reachable set, while the controls supported on the
“short” interval form the “fast” part of it. The proper
choice ofδ is crucial for the accuracy of approxima-
tion. By choosing a smallδ > 0 such thatδ → 0 and
δ/ε → ∞ asε → 0, we get an approximation to the
setD0(T ). The main difference of the present paper
with [Dontchev and Slavov, 1988] stems from the £nal
choiceδ ∼ ε log 1/ε instead ofδ ∼ εα.
Our main asymptotic result consists in £nding the re-

mainder in the previous theorem in a more precise form
c(ξ, η)ε log 1/ε+o(ε log 1/ε). We can do this under an
extra assumption that the support functionhT of the set
UT of controls isC1-smooth outside the origin. Denote
the argument of the function̄h = hT by ζ, and consider
the average

Av τ (
∂h̄

∂υ
)(η) =

1

τ

∫ τ

0

∂h̄

∂υ
(G(T )∗eD(T )∗tη) dt.

The limit Av(f) = lim
τ→∞

Avτ (f) does exist for

any homogeneous of zero degree functionf which
is continuous for anyυ 6= 0. Indeed, the function
φ(t) = G(T )∗eD(T )∗tη has the form of a vector-valued
quasipolynomial, and, therefore,

φ(t) = e(Reλ)ttN
∑

eiωtaω + o(e(Reλ)ttN ),

whereλ is an eigenvalue of the matrixD(T ), N + 1
is the maximal size of the corresponding Jordan block,
sum is taken over all realω such that Reλ + iω is an
eigenvalue ofD(T ), andaω is a time-independent vec-
tor. Since the functionf is homogeneous of zero de-
gree, we have

Av τ (f) =
1

τ

∫ τ

0

f(φ(t)) dt =

=
1

τ

∫ τ

0

f (φ0(t)) dt + o(1),

where φ0(t) =
∑

eiωtaω is a trigonometric poly-
nomial. “Generically”, the trigonometric polynomial
φ0(t) is comprised either of one or two harmonics. The
limit

Av (f) = lim
τ→∞

1

τ

∫ τ

0

f (φ0(t)) dt,

does exist, since the integrand in (3) is an almost peri-
odic function which can be averaged.

Theorem 2. Assume that the support functionh̄ = hT

of the control setUT is C1-smooth outside the origin.
Then, the support functionHε(ξ, η) of the reachable
setDε(T ) to system (1) has the following asymptotic
representation:

Hε(ξ, η) = H0(ξ, η) + c(ξ, η) ε log 1/ε +

+ o(ε log 1/ε(|ξ| + |η|)) asε → 0, (5)

where

c(ξ, η)=
1

Λ

[
Av

〈
F̃ (T )∗ξ̃,

∂h̄

∂υ

〉
(η) − h̄(F̃ (T )∗ξ̃)

]
,

Λ = Λ(η) is the absolute value of the £rst Lyapunov
exponent of the functiont 7→ eD(T )∗tη (this is the
modulus of the real part of an eigenvalue ofD(T )),
ξ̃ = ξ − C(T )∗D(T )∗−1η, and F̃ (T ) = F (T ) −
B(T )D(T )−1G(T ).

Note that the coef£cientc(ξ, η) of ε log 1
ε in the

asymptotic expansion (5) is nonpositive. Indeed,

〈ζ,
∂h̄

∂υ
(υ)〉 ≤ h̄(ζ) for anyζ andυ 6= 0, and the aver-

aging operation preserves the inequality.

Proof. Consider system (2) and divide the proof into
the several steps.
Decomposition of the time interval.First, we de£ne
an optimal value ofδ = δ(η, ε) by the condition
|eD(T )∗ δ

ε η| = ε|η|. Here,| · | stands for an arbitrary
norm. Of course,δ depends on the choice of the norm,
but not essentially: for any norm

δ ∼
1

Λ
ε log

1

ε
asε → 0.

Integration over the “long” interval.In what follows,
we rely on the Lipschitz inequality

|ht(ζ + θ) − ht(ζ)| ≤ C|θ|

for the support functionh of the setU . The inequality
is immediately implied by the uniform bound|x| ≤ C
for anyx ∈ U . In particular,

∣∣∣∣
∫

ht(ζ(t) + θ(t)) dt −

∫
ht(ζ(t)) dt

∣∣∣∣ ≤

≤ C

∫
|θ(t)| dt, (6)

where ζ, θ are arbitrary integrable vector functions.
Consider the support functionHε to the reachable set
Dε(T ) to the split system (2) de£ned by

Hε(ξ, η)=

∫ T

0

ht(F (t)∗Φ(T, t)∗ξ+
1

ε
G(t)∗Ψε(T, t)∗η)dt.

Due to the Lipschitz inequality (6), we have

IT−δ
0 =

∫ T−δ

0

ht(F
∗(t)Φ∗(T, t)ξ+

1

ε
G∗(t)Ψ∗

ε(T, t)η) dt

=

∫ T−δ

0

ht(F
∗(t)Φ∗(T, t)ξ) dt +

+ O(

∫ T−δ

0

1

ε
|Ψ∗

ε(T, t)η| dt).

The remainder

R =

∫ T−δ

0

1

ε
|Ψ∗

ε(T, t)η| dt =

= O(
1

ε

∫ T−δ

0

|Ψ∗
ε(T, t)||η| dt)



can be estimated as follows. We have

Ψ∗
ε(T, t) = Ψ∗

ε(T − δ, t)Ψ∗
ε(T, T − δ), and

Ψ∗
ε(T, T − δ)η = O(ε)|η|.

Indeed,Ψ∗
ε(T, T−δ)η=eD(T )∗δ/εη+O(

δ2

ε
e−αδ/ε|η|),

and
δ2

ε
e−αδ/ε = Cε

(
log2 1

ε

)
εβ = o(ε), while

eD(T )∗δ/εη = O(ε)|η|, whereC and β are positive
constants. Therefore,

R = O(ε)O(
1

ε

∫ T−δ

0

|Ψ∗
ε(T − δ, t)||η| dt).

The integral
1

ε

∫ T−δ

0

|Ψ∗
ε(T − δ, t)| dt is bounded, be-

cause it can be estimated via an integral of the form

1

ε

∫ T−δ

0

e−α τ

ε dτ ≤
1

ε

∫ ∞

0

e−α τ

ε dτ =
1

α
.

Thus, we conclude thatI = O(ε|η|), and

IT−δ
0 =

∫ T−δ

0

ht(F
∗(t)Φ∗(T, t)ξ) dt + O(ε|η|). (7)

Since we do not need a greater precision than
o(ε log 1

ε ), this estimate is wholly satisfactory.
Integration over the “short” interval.The integral over
the complementary interval

IT
T−δ =

∫ T

T−δ

ht(F
∗(t)Φ∗(T, t)ξ+

1

ε
G∗(t)Ψ∗

ε(T, t)η) dt

is equal to

∫ T

T−δ

ht(F
∗(T )ξ +

1

ε
G∗(T )eD(T )∗ T−t

ε η) dt +

+ O(δ2|ξ|) + O(ε|η|). (8)

Indeed, £rst we have

1

ε

∫ T

T−δ

|Ψ∗
ε(T, t) − eD(T )∗ T−t

ε |dt = O(ε),

and this allows us to substituteeD(T )∗ T−t

ε for Ψ∗
ε(T, t).

Second, we have to take into account that
∣∣∣∣∣

∫ T

T−δ

f(t) dt

∣∣∣∣∣ = O(δ2)

if f is a Lipschitz function such thatf(T ) = 0. This
allows us to substituteF ∗(T ) for F ∗(t)Φ∗(T, t), and
we obtain that

IT
T−δ =

∫ T

T−δ

ht(F
∗(T )ξ +

1

ε
G∗(t)eD(T )∗ T−t

ε η) dt +

+ O(δ2|ξ|) + O(ε|η|).

Third, if we substituteG∗(T ) for G∗(t) in the last inte-
gral, there arises an error of order

∫ T

T−δ

1

ε
(T − t)

∣∣∣eD(T )∗ T−t

ε

∣∣∣ dt =

= ε

∫ δ/ε

0

τ |eD(T )∗τ | dτ = O(ε),

and we arrive at (8).
Estimation formula for the support function.Due to the
estimates (7), (8), we can summarize that

Hε(ξ, η)= IT−δ
0 + IT

T−δ =

∫ T−δ

0

ht(F
∗(t)Φ∗(T, t)ξ) dt

+

∫ T

T−δ

ht(F
∗(T )ξ+

1

ε
G∗(T )eD(T )∗ T−t

ε η) dt

+ O(δ2|ξ|) + O(ε|η|). (9)

The right-hand side of (9) can be rewritten as

∫ T

0

ht(F
∗(t)Φ∗(T, t)ξ) dt+

∫ δ/ε

0

h̄(G∗(T )eD(T )∗τη) dτ

+

∫ δ/ε

0

(
h̄(εF ∗(T )ξ + G∗(T )eD(T )∗τη)−

−h̄(G∗(T )eD(T )∗τη)
)

dτ − δh̄(F ∗(T )ξ) +

+O(δ2|ξ|) + O(ε|η|) = K + L + M − N + J, (10)

whereh̄ = hT , andJ = O(δ2|ξ|) + O(ε|η|) is the re-

mainder. The integralK =

∫ T

0

ht(F
∗(t)Φ∗(T, t)ξ) dt

does not need any further transformation. The inte-

gral L =

∫ δ/ε

0

h̄(G∗(T )eD(T )∗τη) dτ has the limit
∫ ∞

0

h̄(G∗(T )eD∗(T )ση) dσ asε → 0. More precisely,

∫ δ/ε

0

h̄(G∗(T )eD∗(T )ση) dσ =

=

∫ ∞

0

h̄(G∗(T )eD∗(T )ση) dσ + O(ε),

because of the de£ning equality|eD̃∗ δ

ε η| = ε|η| for δ,
and the estimate

∫ ∞

T

|f(t)|dt = O(f(T )) asT → +∞,

for f(t) = eDtη, whereD is a stable matrix.
Linearization.The asymptotic computation of the inte-
gral

M =

∫ δ/ε

0

(
h̄(εF ∗ξ +G∗eD∗τη)− h̄(G∗eD∗τη)

)
dτ

is the heart of the proof. The idea is to treat the term
εF ∗ξ in the argument of the integrand of (3) as a small
perturbation ofG∗eD∗τη, and linearize the difference:

h̄(εF ∗ξ + G∗eD∗τη) − h̄(G∗eD∗τη) =

= ε

〈
F ∗ξ,

∂h̄

∂υ
(G∗eD∗τη)

〉
+ remainder.



Here, the notations F,G,D stand for
F (T ), G(T ),D(T ), respectively. Unfortunately,
∂h̄

∂υ
is discontinuous and even unde£ned at the origin.

Therefore, in order to use the linearization, we have
to make sure thatG∗eD∗τη is much greater than
εF ∗ξ. Certainly, εF ∗ξ = O(ε) is small. Still the
term G∗eD∗τη can be very small at some pointsτ of
the interval of integration[0, δ/ε]. We show that the
interval [0, δ/ε] can be divided into two subsets such
that on the one subset the termG∗eD∗τη is relatively
large, while the other part has a relatively small
Lebesgue measure. Before we proceed let us consider
a trivial case. If the functionτ 7→ G∗(T )eD(T )∗τη is
identically zero in[0, δ/ε], then, as we can see from
(10), the integralM is simply equal toN :

M =

∫ δ/ε

0

(
h̄(εF ∗ξ + G∗eD∗τη) − h̄(G∗eD∗τη)

)
dτ

= δh̄(F ∗ξ).

In what follows we assume that the function
G∗(T )eD(T )∗τη is not identically zero.
“Bad” and “good” time instants. Denote Aε =
A(η, ε) := [0, δ/ε]. This is an interval of length

lε = length(Aε) = δ/ε ∼
1

Λ
log 1/ε.

Let us divide the interval of integrationAε into the two
subsetsSε = S(η, ε) = {τ ∈ Aε : |G∗eD∗τη| ≥
ε log 1/ε}, andS̄ε = S̄(η, ε) de£ned by the opposite
inequality.
We will show that the reduced Lebesgue measure

λ̄(S̄ε) = λ(S̄ε)/λ(Aε) of the setS̄ε is o(1). For this
purpose, we reduce the problem to another one pertain-
ing to quasiperiodic functions.
Clearly, the condition|G∗eD∗τη| ≤ ε log 1/ε can be

rewritten in notations (3) as

|φ0(τ) + φ1(τ)| ≤ eΛτ 1

τN
ε log 1/ε, (11)

whereφ0(τ) =
∑

eiωτaω is a trigonometric polyno-
mial, whileφ1(τ) = O(1/τ) asτ → ∞. One can get
rid of the termφ1 as follows. If one removes a rela-
tively short interval (the reduced measure of which is
o(1)), e.g., [0, l1/2

ε ], from Aε, then condition (11) re-
duces to

|φ0(τ)| ≤ eΛτ 1

τN
ε log 1/ε + o(1),

whereo(1) = O(1/log1/2(1/ε)). It is enough to show
that the reduced Lebesgue measureλ̄(σε) of the set

σε = {τ ∈ Aε : |φ0(τ)| ≤ eΛτ 1

τN
ε log 1/ε + o(1)},

which is asymptotically equivalent tōλ(S̄ε), is o(1) as
ε → 0. Now, we £x an arbitrary smallκ > 0 and split
the setσε = σ′

ε ∪ σ′′
ε into two subsets, whereσ′

ε =

{τ ∈ σε : τ ∈ [l
1/2
ε , (1 − κ)lε]} is the intersection

of σε with the “long” interval [l1/2
ε , (1 − κ)lε], while

σ′′
ε = {τ ∈ σε : τ ∈ [(1 − κ)lε, lε]} is contained

in the “short” interval[(1 − κ)lε, lε]. The maximum of
eΛτ τ−N in the “long” interval[l1/2

ε , (1 − κ)lε] is less
thanεκ−1. Therefore, forτ ∈ σ′

ε,

eΛτ 1

τN
ε log 1/ε + o(1) ≤ εκ log 1/ε + o(1) = o(1),

and the setσ′
ε is contained in the set

σ′′′
ε = {τ ∈ Aε : |φ0(τ)| ≤ o(1)},

which is de£ned via the quasiperiodic functionφ0. We
know thatλ̄(σε) ≤ λ̄(σ′′

ε )+ λ̄(σ′′′
ε ), whereλ̄(σ′′

ε ) ≤ κ.
The reduced Lebesgue measureλ̄(σ′′′

ε ) can be esti-
mated by using averaging:
Averaging quasiperiodic sets.The functionφ0 is de-
£ned as follows. We have an analytic functionΨ and
a dense straight winding on a torusT . The function
φ0 is the restriction ofΨ on the winding. If we £x any
numberα > 0, then the reduced measure of the set
{τ ∈ Aε : |φ0(t)| ≤ α} tends to the canonical Haar
measure of the set{t ∈ T : |Ψ(t)| ≤ α} ⊂ T as
ε → 0. Since the set{t ∈ T : Ψ(t) = 0} is an analytic
hypersurface inT , its Haar measure is zero. This im-
plies that̄λ(σ′′′

ε ) = o(1) asε → 0, and the same is true
for λ̄(σε).

Asymptotic form of integralM . Now we come back to
the integralM from (10):

M =

∫

S(η,ε)

(
h̄(εF ∗ξ + G∗eD∗τη) − h̄(G∗eD∗τη)

)
dτ

+

∫

S(η,ε)

(
h̄(εF ∗ξ + G∗eD∗τη) − h̄(G∗eD∗τη)

)
dτ

= I1(ε) + I2(ε).

We know now that the vectorsεF ∗ξ andG∗eD∗τη on
S(η, ε) have different orders of magnitude:εF ∗ξ =
O(ε), while |G∗eD∗τη| ≥ ε log 1/ε. Therefore,
υ(λ) = λεF ∗ξ + G∗eD∗τη 6= 0 for all λ ∈ [0, 1].
Then, in view of the absolute continuity ofh(υ(λ)),
we have

h̄(εF ∗ξ + G∗eD∗τη) − h̄(G∗eD∗τη) =

=

∫ 1

0

〈
εF ∗ξ,

∂h̄

∂υ
(υ(λ))

〉
dλ

= ε

〈
F ∗ξ,

∂h̄

∂υ
(G∗eD∗τη)

〉
+ o(ε|ξ|), (12)

whereo(ε) is uniform with respect toτ ∈ S(η, ε). In-

deed, the natural domain of the functionf(υ) =
∂h̄

∂υ
is

the sphereσ = {|υ| = 1}, becausef is homogeneous
of degree0. Sinceh̄ is assumed to beC1 on the sphere,
the functionf has a modulus of continuityω, so that
|f(x) − f(y)| ≤ ω(|x − y|) if x, y ∈ σ. Now, consider



vectorsx = xλ = υ(λ)/|υ(λ)| in σ. By de£nition of
the setS(η, ε) we have that

|υ(λ) − υ(0)|

|υ(0)|
≤

C|ξ|

log 1/ε
= o(1)

for any λ ∈ [0, 1]. This implies that|xλ − x0| ∼
(log 1/ε)−1 = o(1), and, therefore,

|f(xλ) − f(x0)| ≤ ω((log 1/ε)−1) = o(1)

uniformly overτ ∈ S(η, ε), λ ∈ [0, 1]. The integral
from (12) is equal to

〈
εF ∗ξ,

∫ 1

0

f(xλ)dλ

〉
= 〈εF ∗ξ, f(x0)〉 +

+ εO(ω((log 1/ε)−1)|ξ|),

what makes transparent the uniformity ofo(ε) in (12).
Now, we turn to integralI1(ε). We know that the

Lebesgue measureλ(S(η, ε)) ∼ δ/ε, while the mea-
sureλ(S(η, ε)) is o(δ/ε). By virtue of (12) we have

I1(ε) = ε

∫

S(η,ε)

〈
F ∗ξ,

∂h̄

∂υ
(G∗eD∗τη)

〉
dτ + o(δ|ξ|)

= δAv

〈
F ∗ξ,

∂h̄

∂υ

〉
(η) + o(δ|ξ|).

Note that the remaindero(δ) = δo(1), whereo(1) may
decrease rather slowly. The rate depends on the Dio-
phantine properties of eigenvalues of matrixD.
Sinceh̄(υ) satis£es the Lipschitz inequality, the inte-

gral I2(ε) can be estimated as follows:

I2(ε) = O(ε|ξ|)λ(S(η, ε)) = o(δ|ξ|).

Asymptotically best estimate of the support function.
Summing up we obtain that

Hε(ξ, η)=H0(ξ, η)+

(
Av

〈
F ∗ξ,

∂h̄

∂υ

〉
(η)−h̄(F ∗ξ)

)
δ

+ o(δ|ξ|) + O(ε|η|),

where

H0(ξ, η)=

∫ T

0

ht(F
∗(t)Φ∗(T, t)ξ)dt+

∫ ∞

0

h̄(G∗eD∗tη)dt.

By passing to the original coordinates, we get the simi-
lar estimate for the support function of the reachable set
to the original system in accordance with the theorem
statement.

4 Conclusion
In the generic case, when the setUT of admissi-

ble controls at the time instantT is not a singleton,
the coef£cientc(ξ, η) is not identically (for allξ, η)
equal to zero. Otherwise, this would imply the equality

h̄(ζ) = 〈ζ, ϕ〉, ϕ = Av (
∂h̄

∂ζ
(G∗eD∗tη)), for all ζ and

η. The latter necessarily means thath̄(ζ) is the support
function for the singletonUT = {ϕ}. The fact that
c(ξ, η) 6≡ 0 means that the estimate given by Theorem
1 is sharp, i.e., for someξ, η, we have

|Hε(ξ, η) − H0(ξ, η)| ≥ Cε log 1/ε,

whereC > 0 does not depend onε.
The above results can be illustrated by the following

simple example of a singularly perturbed linear system:

ẋ = u
ε̇y = −y + u,

wherex, y, u are scalars, and|u| ≤ 1. This example
is also presented in [Dontchev and Slavov, 1988]. An
easy calculation reveals that in this case the difference
of the support functions of the prelimit and limit reach-
able sets equals

∆H = Hε(ξ, η) − H0(ξ, η) =

= −2tε|ξ| − |η|(2e−tε/ε − e−T/ε)

provided thatξη < 0. Here,tε = ε log 1
ε
|η|
|ξ| . Thus,

for £xedξ, η in this range, the difference∆H has the
form−2|ξ|ε log 1

ε +Cε+r, whereC is a constant, and
the remainderr is exponentially small asε → 0. This
proves again that the estimate in Theorem 1 is sharp.
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