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Abstract

Some of the limitations of popular optimal control al-

gorithms such as Lyapunov control, the Krotov method

and other iterative algorithms based on functional gra-

dients are considered. Lyapunov control, while elegant

and generally effective for ideal systems, struggles for

realistic systems. Iterative techniques such as the Kro-

tov method tend to be more effective, but the inclusion

of an energy penalty term implies that the resulting so-

lutions are not critical points of the objective functional

alone, and do not maximize it. These problems can be

avoided by using functional gradients without penalty

terms, but even these techniques fail for some prob-

lems.

1 Introduction

Optimal control has been shown to be a powerful ap-

proach to solve optimal pulse design and Hamiltonian

engineering problems for quantum systems [1]. Typ-

ically optimal control involves several steps: �1) for-

mulation of the control problem as an optimization

problem by specifying a functional to be maximized,

�2) parametrization of the control fields to reduce the

dimensionality of the �generally infinite dimensional)

state space, and �3) numerical algorithms to solve the

resulting finite-dimensional optimization problem. In

this paper we focus on the final task, i.e., optimal con-

trol algorithms, although the first two tasks are clearly

non-trivial.
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Although optimization is a rather well-developed

field, the optimization problems that arise in quan-

tum control are typically not simple convex optimiza-

tion problems. For this reason global search tech-

niques, e.g., based on genetic or evolutionary strate-

gies were initially advocated to solve the optimal con-

trol problems arising in areas such as quantum chem-

istry or quantum information processing. However,

global search strategies are computationally expensive,

and it was soon realized that the control landscape,

although not convex, may after all be very simple.

E.g., in [2] it was observed that the objective function

J = Tr[Aρ�t� )], where A = |Ψf ��Ψf | is a projector

onto a pure state and ρ�t� ) = U�t� )|Ψ0��Ψ0|U�t� )†,
has only two critical values J = 0 and J = 1 corre-

sponding to the global minimum and maximum respec-

tively, if the optimization is performed over the entire

unitary group U�N). It can therefore be argued that

for controllable systems [3] and state transfer problems

with objective functionals of the form above, all peaks

�maxima) of J have the same height, and thus a sim-

ple local search using a gradient-based method should

suffice to find a globally optimally solution.

Various gradient-based algorithms have been pro-

posed to solve the resulting optimal control problems.

Among the most popular are Lyapunov control [4; 5; 6;

7; 8], iterative algorithms based on generalizations of

the Krotov method [12], and gradient-ascent methods

such as GRAPE [13]. Although most of these strate-

gies can be shown to exhibit desirable properties such

as monotonic convergence, and have been successfully

applied to a wide variety of problems to find control

pulses that perform far better than simple, intuitive con-

trol schemes, there are open questions and gaps in ex-

isting arguments that should be addressed. In the fol-

lowing we will highlight some of these issues.

2 Trajectory Tracking via Lyapunov Control

One formulation of an optimal control problem is

in terms of steering the system to a target state ρd



asymptotically, or tracking a target trajectory ρd�t). In

this case the objective is to find an admissible con-

trol ��t) such that the trajectory ρ�t) of the controlled

system asymptotically tracks the target trajectory, i.e.,

�ρ�t) − ρd�t)� → 0 as t → ∞. The states referred

to here can be pure-state wavefunctions, mixed states

or unitary operators. We shall assume that ρ�t) is a

density operator, i.e., a positive unit-trace operator on

the system’s Hilbert space H, representing a pure or

mixed state of the system. Assuming a bilinear Hamil-

tonian control system, the simplest and most common

type considered in the literature, the system and target

states, ρ�t) and ρd�t), respectively, satisfy the follow-

ing dynamical laws

ρ̇�t) = −i[H0 + f�t)H1� ρ�t)]� �1a)

ρ̇d�t) = −i[H0� ρd�t)]� �1b)

where H0 and H1 are a system and control Hamilto-

nian, respectively, and f�t) is the control field. It is

easy to verify that the so-called feedback control law

f�t) = Tr �[−iH1� ρ�t)]ρd�t)) �2)

ensures that the Hilbert-Schmidt distance

V �t) = V �ρ�t)� ρd�t)) =
1

2
�ρ�t)− ρd�t)�

2

= Tr[ρ2
d�t)]− Tr[ρ�t)ρd�t)]

�3)

is monotonically decreasing as

V̇ �ρ�t)� ρd�t)) = −f�t) Tr�[−iH1� ρ�t)]ρd�t)) ≤ 0�
�4)

and thus V �ρ� ρd) decreases along any trajectory

�ρ�t)� ρd�t)) of the system. If V �ρ� ρd) → 0 then

ρ�t) → ρd�t) and the control objective is realized. It is

easy to see that the control is optimal in this case. In

fact, it can be shown that f�t) = ��ρ∗�t) | ∂J∗�ρ)/∂ρ��,
where J∗�ρ) satisfies the Hamilton-Jacobi equations.

However, we cannot conclude V �ρ� ρd) → 0 in gen-

eral. Rather, we can only employ LaSalle’s Invariance

Principle to show that the system converges to a maxi-

mal invariant set E = {V̇ ≡ 0}, which unfortunately,

is generally large. Careful analysis shows that we can

distinguish two cases [8]:

Ideal Systems: Lyapunov control is generally ef-

fective, i.e., system state ρ�t) converges to ρd�t) as

t→∞ for almost all initial states ρ�0), except for

a measure-zero set of bad target states ρd.

Non-ideal Systems: Lyapunov control is gener-

ally not effective, i.e., target state is a centre on

a centre manifold, and almost all trajectories con-

verge to centre manifold but not ρd.

Here, the dynamical system with H = H0 + f�t)H1

is considered ideal if H0 is strongly regular and H1

is fully connected. Although ideal Hamiltonians are

“generic” in an abstract sense, most physical systems

not ideal even if they are controllable, except for n = 2.

Thus, while the method is theoretically effective and

optimal for most systems and target states, this is gen-

erally not the case for systems of physical interest.

3 Generalized Krotov Method

An alternative to optimal control techniques based on

instantaneous minimization of a Lyapunov function are

iterative techniques. A particularly popular approach

in quantum chemistry [9; 10; 11], especially for opti-

mization problems where the objective is to maximize

the expectation value of a target observableA at a fixed

target time t� , are generalized Krotov methods. These

are based on choosing a trial field �
�0)�t) with bounded

components

�f �0)
m �∞ ≡ max

t�≤t≤t�

|f �0)
m �t)| <∞ �5)

for m = 1� . . . �M , and then repeatedly solving the

initial value problem for the variational trial function

ρ
�n)
v �t)

∂

∂t
ρ�n)

v �t) = −
i

�
�[� �n)�t)� ρ�n)

v �t)]� ρ�n)
v �t0) = ρ0�

�6)

followed by the final value problem for the variational

trial function A
�n)
v �t)

∂

∂t
A�n)

v �t) = −
i

�
�[�̃n�t)� A�n)

v �t)]� A�n)
v �t� ) = A�

�7)

while updating the control fields after each step accord-

ing to the rule

f �n)
m = �1− α)f̃ �n−1)

m −
iα

λm

��A�n−1)
v |�m|ρ

�n)
v ��

�8a)

f̃ �n)
m = �1− β)f �n)

m −
iβ

λm

��A�n)
v |�m|ρ

�n)
v �� �8b)

One can show that for α� β ∈ [0� 2) this algorithm

converges to a solution of the Euler-Lagrange equations

0 =
δJtot

δAv

=
∂

∂t
ρv�t) +

i

�
�[��t)� ρv�t)]� �9a)

0 =
δJtot

δρv

=
∂

∂t
Av�t) +

i

�
�[��t)� Av�t)]� �9b)

0 =
δJtot

δfm

=
λm

�
fm�t) +

i

�
��Av�t)|�m|ρv�t)��.

�9c)



for the target functional

J = �− C = Tr[Âρ̂�t� )]−
M�

m=1

λm

2�
�fm�

2
2. �10)

Thus, the resulting solutions �ρ�t)� A�t)� ��t)) are op-

timal in the sense that they are critical points of the

target functional J . However, due to the added penalty

term C, the critical points of J are generally not critical

points of�, and one can verify that the solutions gener-

ally do not satisfy [ρ�t� )� A�t� )] = 0. Since the criti-

cal points ρ�t) of�must commute with the observable

at the target time, we must conclude that the solutions

found by the Krotov method are generally not optimal

solutions for the unconstrained optimization problem,

i.e., the do not maximize �.

4 Gradient-Ascent Algorithms without Penalty

Terms

The previous section shows that the introduction of the

penalty term results in solutions that fail to maximize

the objective function. A logical step therefore is to

eliminate the penalty term and attempt to maximize the

objective functional directly. For a simple �pure) state

transfer problem of steering the system from the initial

state |Ψ0� to a final state |Ψd� at time t� by applying

a suitable control f�t), the objective function can be

simplified to

� = |�Ψd|Uf�t)�t� )|Ψ0�|
2. �11)

where Uf�t)�t) must satisfy the Schrodinger equation

d

dt
Uf�t)�t) = −i[H0 − f�t)H1]Uf�t)�t) �12)

for t ∈ [0� t� ], and Uf�t)�0) = I .

This state transfer problem was recently analyzed by

[14], where it was attempted to show that the functional

derivative kernel δ�
δf�t) can be identically zero for a

given f�t) only when the associated objective function

� attains the extremal values of 0 or 1, provided that

the system is controllable, i.e., that iH0 and iH1 gen-

erate the Lie algebra u�N) or su�N), where N is the

dimension of the underlying Hilbert space. We show

that, although this appears to be true for most initial

and final states, there are counter-examples. It is easy

to verify that δ�
δf

equals

2 Im
�
�Ψ0|U

†�t)H1U�t)U†�t� )|Ψd��Ψd|U�t� )|Ψ0�
�

�13)

where we have dropped the subscript f�t) indicating

the control dependence of U�t).
From this we see one way for δ�/δf to vanish identi-

cally is if one of the factors on the RSH vanishes identi-

cally. The second factor vanishes identically if and only

if �Ψd|U�t� )|Ψ0� = 0, i.e., if the time-evolved initial

state |Ψ�t� )� has zero overlap with the target state. It

is easy to see that a control f�t) and corresponding tra-

jectory Uf�t)�t) for which this happens is a global min-

imum of the objective functional � and ��f�t)) = 0.

This the the most common case, but it is possible to

construct examples such that δ�/δf ≡ 0 but ��f�t))
takes values between 0 and 1.

One way to construct such examples is by making

�Ψ0|U
†�t)H1U�t)U†�t� )|Ψd� = 0 for all t. That this

is possible can be seen by choosing

|Ψ0� =
1
√

2
�1� 0� 1)T � |Ψd� =

1
√

2
�1� 0�−1)T

and

H1 =

�


0 1 0
1 0 1
0 1 0





in a basis which diagonalises H0. Then we have for

f = 0

�Ψ0|U
†�t)H1U�t)U†�t� )|Ψd� = 0

for any t and t� , since any product of the form

�


a
0
b





�


0 1 0
1 0 1
0 1 0





�


c
0
d



 = 0

Setting H0 = diag��1� �2� �3) and ω13 = �3− �1 shows

that ��Ψ0�Ψd� f) = 1
2 [1 − cos�ω13t� )] and thus de-

pending on the target time t� and energy gap ω13, any

value in �0� 1) can be achieved. Furthermore, as H1

is connected, it suffices to choose H0 strongly regular,

e.g., H0 = diag�2� 3� 5) to ensure controllability of the

system.

The importance of the previous example, while it may

seem contrieved, is that there are choices of |Ψ0�, |Ψd�
and f�t) such that ��Ψ0�Ψd� f) takes any value in

�0� 1) even though δA/δf vanishes identically, and this

is the case even for fully controllable systems. More

extensive analysis shows that in the generic case of

H0 =

�
a 0
0 b

�

� H1 =

�
c d
d̄ c

�

�

the choice of states

|Ψ0� =
1

√
2|d|

�
|d|
d̄

�

� |Ψd� =
1

√
2|d|

�
|d|
−d̄

�



ensures that δ�/δf ≡ 0 for f�t) = 0. Indeed, we can

explicitly compute

�Ψ0|U
†�t)H1U�t)U†�t� )|Ψd� �Ψd|U�t� )|Ψ0�

=
|d|

2
[cos�ωt)− cos�ω�t� − t))] +

c

2
[1− cos�ωt� )]

where ω = b− a, which is clearly real, as well as � =
1
2 [1 − cos�ωt� )]. which shows that we can attain any

value in �0� 1) for some t� ∈ �0� π
ω
), and excluding

the special cases when d = 0 or a = b is enough to

guarantee controllability.

More importantly, the previous construction provides

counter-examples for systems of any dimension, not

just N = 2, as for any two diagonal elements of H1

which are equal, we can restrict attention to the two-

dimensional subspace they act on, construct |Ψ0� and

|Ψd� as above, and embed these states into H to obtain

examples for which δ�
δf

= 0 but � assumes values in

�0� 1). The counter-examples thus constructed are such

that the initial and target states both lie on a great circle

in a 2D subspace of the Hilbert space. This is reminis-

cent of the special case of target states lying on a great

circle in a 2D subspace of H for Lyapunov control, for

which the Lyapunov function could take any value be-

tween 0 and its maximum despite V̇ �t) ≡ 0. Although

it seems that these counter-examples are quite special

and form a very small set of optimal control prob-

lems, they do include some control problems of interest

involving preparing/transforming CAT states or maxi-

mally entangled states. The construction above only

provides examples for certain special non-stationary

target states. But examples for which δ�/δf = 0 but

� �= 0� 1 exist even for stationary target states. E.g.

consider the three-level system

H0 =

�


1 0 0
0 2 0
0 0 4



 � H1 =

�


1

�
2/3 0�

2/3 2
�

1/3

0
�

1/3 4





with initial state |Ψ0� = �1� 0� 0)T and target state

|Ψd� = �0� 0� 1)T . Controllability of this system again

follows by connectedness of H1 and strong regular-

ity of H0, but setting, e.g., t� = π and f�t) = 1,

we can explicitly calculate � = 8
9 , while δ�

δf
�t) =

2 Im
�
4
9 �3 cos�t)− 5)

�
indeed vanishes.

5 Conclusions

We have considered the limitations of several popular

algorithms for solving quantum optimal control prob-

lems. In particular we have shown that none of the al-

gorithms work for all control problems. Lyapunov con-

trol, though elegant, is generally the most restrictive in

terms of the conditions imposed on the system Hamil-

tonian as well as the target states. Iterative numerical

techniques such as the Krotov method are less likely to

fail completely but generally do not lead to solutions

that maximize the objective functional due to the pres-

ence of an energy penalty term. We have also shown by

constructing explicit counter-examples that even func-

tional gradient techniques which have been claimed not

to suffer from such problems, can fail for certain prob-

lems. In particular, it is possible for the functional gra-

dients to vanish even when the objective functional is

not maximized or minimized but assumes intermediate

values, which was thought to be impossible.
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