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Abstract

The intensity of an electromagnetic wave interacting self-consistently with a beam of
charged particles as in a free electron laser, displays large oscillations due to an aggregate
of particles, called the macro-particle. In this article, we propose a strategy to stabilize the
intensity by destabilizing the macro-particle. This strategy involves the study of the linear
stability (using the residue method) of a specific periodic orbit of a mean-field model. As a
control parameter - the amplitude of an external wave - is varied, a bifurcation occur in the
system which have drastic effect on the modification of the self-consistent dynamics, and in
particular, of the macro-particle. We show how to obtain an appropriate tuning of the control
parameter which is able to strongly decrease the oscillations of the intensity without reducing
its mean-value.

Extensive abstract

The self-consistent interaction between an electromagnetic wave and a beam of charged
particles is ubiquitous in many branches of physics, e.g. accelerator and plasma physics.
For instance, it plays a crucial role in the Free Electron Laser, which is used to generate a
tunable, coherent, high power radiations. Such devices differ from conventional lasers in using
a relativistic electron beam as its lasing medium. The physical mechanism responsible for the
light emission and amplification is the interaction between the beam and a wave, which occurs
in presence of a magnetostatic periodic field generated in an undulator. Due to the effect
of the magnetic field, the electrons are forced to follow sinusoidal trajectories, thus emitting
synchrotron radiation. This initial seed, termed spontaneous emission, acts as a trap for the
electrons which in turn amplify it by emitting coherently, until the laser effect is reached.

The coupled evolution of radiation field and N particles can be modeled within the frame-
work of a simplified Hamiltonian picture [1]. The N+1 degree of freedom Hamiltonian displays
a kinetic contribution, associated with the particles, and a potential term accounting for the
self-consistent coupling between the particles and the field. Hence, direct inter-particle inter-
actions are neglected, even though an effective coupling is indirectly provided because of the
interaction with the wave.

The linear theory predicts [1], for the amplitude of the radiation field, a linear exponential
instability and a late oscillating saturation. Inspection of the asymptotic phase-space suggests
that a bunch of particles gets trapped in the resonance and forms a clump that evolves as a
single macro-particle localized in phase space. The untrapped particles are almost uniformly
distributed between two oscillating boundaries, and populate the so-called chaotic sea.

Furthermore, the macro-particle rotates around a well defined center and this peculiar
dynamics is shown to be responsible for the macroscopic oscillations observed for the intensity
[2, 3]. It can be therefore hypothesized that a significant reduction in the intensity fluctuations
can be gained by implementing a dedicated control strategy, aimed at destroying the macro-
particle in space. As a side remark, note that the size of the macro-particle is directly related
to the bunching parameter, a quantity of paramount importance in FEL context[3].

For example, a static electric field [4] can be used to increase the average wave power. While
the chaotic particles are simply accelerated by the external field, the trapped ones transmit the
extra energy to the radiation field, thus being responsible for the amplification of the latter.
Furthermore, the experiment by Dimonte and Malmberg [5] suggests that a strategy based on
the destruction of the macro-particle may reduce the oscillations of the intensity of the wave.

The dynamics can be investigated from a topological point of view, by looking at the phase
space structures. In the framework of a simplified mean field description, i.e. the so-called
test-particle picture where the particles passively interact with a given electromagnetic wave,
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the trajectories of trapped particles correspond to invariant tori, whereas unbounded particles
evolve in a chaotic region of phase-space. Thus, the macro-particle corresponds to a dense
set of invariant tori. Our strategy is to modify the macro-particle dynamics by restoring or
destroying invariant tori in selected regions of phase space.

A technique of Hamiltonian control can be used [6, 7] to reconstruct additional invariant
tori around the macro-particle, in order to enhance the trapping. A specific perturbation is
computed, which guarantees the confinement of trajectories characterized by a specific energy,
on invariant tori of the dynamics.

We propose a strategy [8] to stabilize the intensity of the wave, by chaotizing the part of
phase-space covered by the macro-particle. An additionnal test-wave is introduced into the
system, whose amplitude is used as a control parameter to modify the topology of phase-space.
The residue method [9, 11, 10, 12] is implemented to identify the important local bifurcations
happening in the system when the parameter is varied, by an analysis of linear stability of
specific periodic orbits : then the system is driven through the relevant bifurcations, until the
prescribed behaviour (optimal chaoticity in the present) is obtained. Although first developed
in a mean-field approach, our strategy proves to be robust in the self-consistent framework.
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