
Induction motor rotor time constant inverse estimation using neural
network

N. Kabache B. Chetate

Abstract— This paper proposes a new estimator for induction
motor rotor time constant inverse basing on a simple hidden
layer neural network. An online algorithm is developed for the
training of the suggested neural network estimator parameters.
This algorithm use the model reference principle by comparing
measured and estimated stator currents. So, beside the mea-
sured currants which present the reference model (ideal model),
it suggested to reconstitute these currants via the motor model
which present the actual model (real model). thereafter the
errors between measured and estimated currants are exploited
for the neural network parameters adaptation. The obtained
results show that beside its simplicity, the proposed estimator
provides satisfactory performances even at very low speeds.

I. INTRODUCTION

The induction motor have many interesting features such
as low cost and ruggedness which make it the basic supply
of mechanical energy in industrial applications. However, its
dynamic behavior is highly nonlinear and coupled with time
varying parameters and no accessed rotor [1]. Therefore, any
control scheme for this motor must deal with two impor-
tant problems: the rotor flux estimation and the parameter
identification. To be noted that all motor’s parameters are
time varying, in particular, the rotor time constant which is
extremely affected by the heating effect [1]. In literature,
several adaptive control methods were proposed for the
induction motor with estimation of rotor flux and rotor time
constant [2], [3], [4], [5], [6], [7], [8] but these approaches
suffer from the same problems such as complexity, validity
at low speeds and light loads.

To avoid some drawbacks of existing alternatives and
improve the induction motor responses, a neural networks-
based approach is suggested in this paper for the rotor time
constant inverse estimation. Indeed, over the last years, new
architectures have been proposed for the neural networks
where with the use of some nonlinear adaptive theories [9],
many powerful online learning algorithms were developed
neural networks training [10], [12], [13], [14], [15], [16],
[17]. Via such algorithms, the neural network has currently
become one of the most powerful means for the identification
and control of uncertain nonlinear systems.

The contribution of this paper is the use of this new neural
network architecture to develop an estimator for rotor time
constant inverse. Thereafter the estimated parameter is used
with motor model to estimate rotor flux. For the training of
the suggested neural network estimator we propose the use
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of a new error function based on stator currents dynamics.
Indeed, stator currents are available for measurement and
provide a good index to detect and observe the parameter
variation in motor. Using the estimated rotor time constant,
the stator currents are estimated through the motor model.
Thereafter, the dynamics of errors between estimated and
measured currents are developed while revealing a cor-
respondence between these dynamics and neural network
weights estimate errors. Based on this error dynamics, the
adaptive law [9], [13], [16], [17] is exploited so as to gen-
erate the training algorithm for neural network weights. The
proposed estimator is checked under all operating conditions
and a satisfactory estimate for rotor time constant inverse,
even at light load and very low speed are reached.

II. DEVELOPMENT OF THE PROPOSED NEURAL NETWORK
ESTIMATOR FOR ROTOR RESISTANCE

As mentioned above, the establishment of the suggested
estimator is based on stator currants dynamics, so to start
and by using the induction motor model in the fixed frame
[16], these lasts are given as follow:

İ = −γI + αβΦ +
[

0 βωr

−βωr 0

]
Φ +

1
δ
Us (1)

With, I =
[

Ia Ib

]T , Φ =
[

Φa Φb

]T , Us =[
Va Vb

]T , where: Ia, Ib are the stator currents, Va, Vb

are the stator voltages, Φa, Φb are the rotor flux components,
ωr is the rotor speed, Rs, Ls are stator resistance and
inductance, Rr, Lr rotor resistance and inductance, M is
the magnetizing inductance. And β = M

δLr
, γ = αβM + Rs

δ ,
δ = Ls(1− M2

LsLr
), α = Rr

Lr

To establish the proposed estimator, supposing that for
induction motor rotor time constant only its nominal value is
known (the rated is that obtained off-line from some standard
tests on induction motor) and our goal is to estimate its
unknown variation. According to this supposition, the actual
value rotor time constant inverse (α) and γ can be given as:

α = αn + ∆α

γ = γn + βM∆α + Rs

δ

(2)

With
- αn = Rrn

Lrn
is the rated value of rotor time constant

inverse where Rrn and Lrn are the rated values of rotor
resistance ind inductance;

- ∆α: Is the unknown variation in rotor time constant
inverse;



- γn = αnβM + Rs

δ

By using a neural network estimator, the unknown ∆α

(the unknown variation in rotor time constant inverse) can
estimated as follows:

∆̂α = N̂σ(N̂cX
T ) (3)

And thereafter (2) become:

α̂ = αn + ∆̂α

γ̂ = γn + βM∆̂α + Rs

δ

(4)

With:
- α̂r: The estimated value of λr;
- γ̂: The estimated value of γ;
- ∆̂α: The estimated value of ∆α;
- N̂(1 × nc): The matrix of estimate weights between

hidden and output layers;
- N̂c(nc × ne): The matrix of estimate weights between

input ant hidden layers;
- X(1× ne): The input vector;
- σ: Is a sigmoid function;
- ne, nc: The number of neurons in input and hidden

layers.
As explained above, we will use the stator currants For

the training of our neural network estimator (3). therefore
it is suggested to exploit the estimated rotor time constant
inverse for the estimation of the stator currents throw (1) and
thereafter, the error between estimated and measured currents
will be used for the adaptation of neural network parameters.
Therefore, by introducing (4) in (1), the stator currents can
be estimated as follow:

˙̂
I = −γ̂Î + α̂βΦ̂ +

[
0 βωr

−βωr 0

]
Φ̂ +

1
δ
Us (5)

With Î =
[

Îa Îb

]T
, Φ̂ =

[
Φ̂a Φ̂b

]T
, where Îa,

Îb, Φ̂a and Φ̂b are the estimate values of stator currents and
rotor flux.

Supposing now that there exists a neural network with
ideal parameters that it can provide the exact value of rotor
time constant inverse variation ∆α so that through (1) it will
be possible to obtain the exact values of stator currents which
are in our case the measured currents. under such situation,
the ideal value of rotor time constant inverse variation can
be given by the ideal neural network as follows:

∆α = Nσ(NcX
T ) (6)

Where N and Nc are the matrix of ideal weights for the
ideal neural network .

Considering now the estimate errors for the stator currents
as follow:

Ĩ =
[

Ia − Îa Ib − Îb

]T
(7)

Using (1) and (7), the stator currents estimate error dy-
namics can be expressed as:

˙̃
I = −γnĨ + B∆̃α + ζ1 (8)

With ∆̃α = ∆α−∆̂α, Φ̃ =
[

Φa − Φ̂a Φb − Φ̂b

]T
and

B =

[
βαnΦ̂a − M2αn

δLr
Ia

βαnΦ̂b − M2αn

δLr
Ib

]
(9)

ζ1 =
[

βαn npβω
−npβω βαn

]
Φ̃ (10)

The use of (3), (6) and with a Taylor expansion of
σ

(
NcX

T
)

around
(
N̂cX

T
)

(by neglecting high orders), the
expression (8) becomes [13], [16], [17]:

˙̃
I = −γnĨ+B

(
Ñ

(
σ̂ − ˙̂σN̂cX

T
)

+ N̂ ˙̂σÑcX
T
)
+ζ2 (11)

Where Ñ = N − N̂ , Ñc = Nc− N̂c, σ̂ = σ
(
N̂cX

T
)

and

ζ2 = ζ1 + ψ
(
Ñ , Ñc

)
with ψ is a bounded error function

correspond to the used Taylor expansion.
Basing on the stator currents estimate error dynamics (11),

training algorithm for neural network weights can be given
as [13], [16], [17]:

˙̂
N = BT

(
σ̂ − ˙̂σN̂cX

T
) [

Ĩ
]T

+ τ
∣∣∣Ĩ

∣∣∣ N̂

˙̂
N c = BT N̂ ˙̂σXT

[
Ĩ
]T

+ τc

∣∣∣Ĩ
∣∣∣ N̂c

(12)

with τ1, τ2, τc1, and τc2 are appropriate positive constants.

III. SIMULATION RESULTS

For testing the suggested neural estimator it has been used
with the control scheme of [16]. The simulation study is
carried for several operating conditions where different step
and linear (ramp) variations were introduced on rotor time
constant see (Fig. 1), for the motor parameters see [16].

Fig. 1. reference values for (a) rotor time constant inverse (b) speed (c)
torque (d) rotor flux

The estimated rotor time constant inverse values, given
by the proposed neural network estimator, are illustrated on
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Fig. 2. Response of the proposed estimator for rotor time constant inverse
variations
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Fig. 3. Evolution of motor speed with rotor time constant inverse estimation
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Fig. 4. Evolution of motor torque with rotor time constant inverse
estimation

figure (2). It is obvious that without considering some small
fluctuations, in transient regimes, the estimated rotor time
constant inverse corresponds well to its ideal (true) values
even for very low speeds and weak loads. This accuracy can
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Fig. 5. Evolution of rotor flux amplitude with rotor time constant inverse
estimation

be seen in motor responses where, the speed (Fig. 3), the
torque (Fig. 4) and rotor flux (Fig. 5) are not affected even
for a variation of 100% of rotor resistance.

IV. CONCLUSION

In this paper, a new neural network estimator is proposed
for estimation of the induction motor rotor time constant
inverse. The obtained results show clearly the capacity of
the suggested estimator to give a satisfactory estimation
for rotor time constant in all induction motor operating
conditions even at very law speed and weak load. Besides,
the proposed estimator is characterized by a simple archi-
tecture of only two neurons in hidden layer with simple
adaptation training algorithm. It uses simply errors between
estimated and measured stator currents for the neural network
parameters adaptation. The obtained results permit also to
extend the perspective of the proposed approach to estimate
other important parameters such that the stator time constant,
load torque and motor speed which allow establishing a
control without speed sensor for the induction motor which
is very indicated in recent applications.
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