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Abstract- A method of targeting synchronization and its control is 
reported in chaotic oscillators. This proposes design of appropriate 
coupling using an open-plus-closed-loop (OPCL) scheme based on 
Hurwitz stability to establish a desired state of synchrony between 
the oscillators. In the synchronization state, a chaotic attractor can 
be scaled up or down in size relative to another attractor. 
Additionally, a technique of controlling synchronization is 
introduced that allows a smooth transition from complete 
synchronization to antisynchronization or vice versa, by tuning a 
system parameter without loss of stability. A smooth scaling of the 
size of the attractor is also implemented. The general theory of the 
coupling definition is described for unidirectional as well as bi-
directional mode. Numerical examples are given using a Sprott 
system. Physical realization of the OPCL coupling and control of 
synchronization is demonstrated in electronic circuit.  
 
Index-Synchronization, chaotic oscillator, coupling design, Sprott 
circuit. 
 

I. INTRODUCTION 
 

Chaotic trajectories under coupling converge in the long run to 
establish a state of synchrony: weak or strong correlation [1-4]. 
This knowledge encouraged studies on its applicability in secure 
digital communication. In the last three decades, some successes 
were certainly achieved such as chaos communication via public 
domain fiber-optic links [5]. However,  the main limitation [6-9] 
of the existing techniques lies in instabilities due to parameter 
mismatch and presence of noise. To circumvent the problems, 
rigorous investigations were done to understand the onset of 
synchronization and their stability. In the process, a variety of 
possible coherent states were observed in chaotic oscillators: 
complete synchronization (CS) or antisynchronization (AS), lag 
synchronization (LS), phase synchronization (PS), antiphase 
synchronization (APS), generalized synchronization (GS). In 
case of CS [3], two chaotic trajectories become identical in 
amplitude and phase in time. In case of AS, two trajectories are 
identical in amplitude but opposite in phase. Two chaotic 
trajectories are identical in amplitude but maintain a constant lag 
in case of LS [10-11]. Chaotic trajectories maintain a constant 
phase difference but their amplitudes remain uncorrelated in PS 
[12-13]. APS [13-14] is opposite to PS: no correlation in 
amplitude but maintain opposite phase in time. In case of GS 
[15], two trajectories have no apparent correlation but maintain 
a functional relationship. 
        Various coupling configurations, unidirectional, mutual or 
bidirectional coupling were tried and also special types of 
coupling such as inhibitory [16] or excitatory [17] and repulsive 
[18] were investigated, particularly, in context of neuron 
dynamics.  
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    Major efforts of the investigations was concentrated on 
playing with the coupling strength and the mismatch parameters 
or noise strength to observe the onset of different 
synchronization regimes and their instabilities in two or more 
oscillators. Under such linear diffusive coupling, all different 
synchronization regimes, CS or AS, LS and PS, APS were 
observed by varying the coupling strength but above different 
critical coupling intercepted [13-14] by intermediate 
desynchronization regimes.  
   On the other hand, engineering synchronization [19-21] in 
nonlinear oscillators is recently given importance for practical 
purposes. It assumes the definition of a dynamical system as 
known, then addresses a question how to define an appropriate 
coupling to realize a desired state of synchronization in an 
assembly of the given systems and also to ensure stability. It is 
reported [22-24] by the authors that, once the definition of a 
model system is known, one can always define a coupling to 
establish a desired synchronization state between chaotic 
oscillators, either CS, AS or amplitude death (AD) using an 
OPCL scheme based on Hurwitz stability [24]. A driver 
attractor can also be scaled up or down (amplified or attenuated) 
in size at the response exactly at a pre-defined value. This 
coupling differs from the usual simple linear diffusive form, yet 
it is not difficult to implement physically. In engineering 
applications, an additional requirement is accessibility of 
tunable parameters necessary for a precise and smooth control 
of synchronization.  
   In this paper, the issue of engineering synchronization in 
chaotic oscillators is further explored using the OPCL coupling. 
The method was so far unable to realize AS in any system under 
bidirectional mode excepting inversion symmetric systems. The  
theory is extended here to remove  this restriction. Next, a 
method of controlling synchronization is introduced, 
particularly, for unidirectional mode. Given a model system and 
a target synchronization state, the coupling is defined 
analytically to establish the desired of synchronization state 
between two oscillators and then physically implemented that 
incorporates a smooth control from one to the other form of 
synchronization, namely, from CS to AS or vice versa using a 
tunable system parameter. The attractor size is also allowed to 
be varied continuously and smoothly. By smooth control, it is 
meant that no loss of stability in synchronization occurs during 
the transition from CS to AS or vice versa. This is in contrast to 
what is usually observed for linear diffusive coupling. The 
present study uses a Sprott system for numerical examples. 
Experimental realization of the coupling and control of 
synchronization is also demonstrated using electronic circuits of 
the Sprott system.  
     The paper is organized as follows: theory of OPCL coupling 
is explained in section II. In section IIIA, the bidirectional 
coupling is elaborated for CS and AS using numerical examples 
of a Sprott system. In section IV, experimental verifications of 
unidirectional and bi-directional OPCL schemes are described. 
Results are summarized in section V.  
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II. OPEN-PLUS-CLOSED-LOOP COUPLING: THEORY 

 
   The OPCL coupling was investigated  [22-24] earlier to 
realize CS and AS with amplification (or attenuation) in chaotic 
oscillators using unidirectional coupling. A physical realization 
of the coupling was also demonstrated in electronic circuit. The 
theory was later extended [24] to bidirectional coupling but it 
was found restricted to inversion symmetric system only in the 
AS mode. The theory is extended here to rule out the restriction 
and to generalize it for any chaotic system. Two chaotic 
oscillators are defined by 
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If the oscillators are mutually coupled to achieve a goal 
dynamics,  
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the coupled chaotic system is defined by  
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where α  is a constant. A general definition of the coupling 
functions is given, 
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where J1=(∂/∂y) and J2=(∂/∂g1) are the Jacobian of the 
interacting dynamical systems. H is an arbitrary nxn constant  
matrix and Sx, Sy are the constants which act as switches to 
configure either unidirectional or bidirectional coupling. For 
mutual or bidirectional coupling,  Sx=Sy=0.5 and for master-
slave or unidirectional coupling, Sx=0, Sy=1. The error function 
of the coupled system is, 
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and the error dynamics is  
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when f(y) can be written, using Taylor ’s series expansion, as 
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Using an approximation of a small error e, the Taylor’s 
expansion is truncated upto the first order derivative in (6) and 
substituted in (3b). Assuming a state of stable synchronization   
when e→0 for t→∞ and substituting y=αx or y=g1 in  (3c),  the 

error dynamics is obtained as Hee =& from (5). This indicates 
that the error dynamics has a zero steady state (e→0, t→∞) if 
the H matrix has eigenvalues all with negative real parts, i.e. H 
matrix becomes a Hurwitz. A state of asymptotically stable 
synchronization is established.  
    The essential factor in defining the coupling in 3(c)-(d) is the 
appropriate selection of the elements of the H matrix to realize a 
stable synchronization state. All other parameters are known 
from the definition of the dynamical system except the constant 
α which can be chosen arbitrarily and varied continuously. The 
H matrix is constructed from the Jacobian of the model flow of 
the interacting oscillators: the elements of the matrix, Hij, are 
chosen same as Hij,=(∂f(g1)/∂g1)ij when (∂f(g1)/∂g1)ij is a 
constant in a Jacobian. If (∂f(g1)/∂g1)ij involves any state 
variable, it is replaced by a constant pi. Once the H matrix is 
defined it has to satisfy a Routh-Hurwitz (RH) criterion [23-24] 
to confirm that eigenvalues of H matrix all have negative real 
parts. For a 3D system, as example, the H matrix (3x3) has a 
characteristic equation, 
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where ai (i=1,2,3) is a constant and the RH criterion is given by 
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The ai parameters of  (7a) can be expressed in terms of the pi 
parameters of the H matrix to realize the RH criterion. The 
stability of synchronization is thus ensured by an appropriate 
choice of pi. Then the sign of α decides whether it is CS or AS 
and its magnitude decides the scale of the attractor size (relative 
amplification or attenuation of attractors). From (3) it is clear 
that the mutual coupling is symmetric for α=1, but one can only 
achieve CS but no amplification or attenuation. The coupling is 
asymmetric for α≠1, when one can realize both CS and AS and 
relative scaling (amplification or attenuation) of attractor size. 
Two different cases arise for asymmetric mutual coupling: the 
coupling is so designed as to establish stable synchronization by 
keeping one oscillator size unchanged and to change the size of 
the other oscillator by varying α.  Case I: To maintain 
synchronization and to change the size of the second oscillator 
(3b), the goal is set by (2) and the coupling terms are defined by 
(3c)-(3d) when the error function of the coupled system is 
defined by (4). Case II: To allow changes in the size of the first 
oscillator (3a) under a state of synchrony, one has to redefine 
the goal dynamics,  
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when the coupling terms are defined by 
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where J1=(∂/∂g1) and J2=(∂/∂x) are the Jacobian of the 
interacting dynamical systems. The error function of the coupled 
system is also redefined by )(e yx α−= .  
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  On the other hand, the master slave coupling is always 
asymmetric and if α is varied from -1 to 1, a transition from AS 
to CS or vice versa can be observed with attenuation for 
intermediate values of α. Scaling up of attractors (amplification) 
with a transition from AS to CS or vice versa is possible for a 
choice of |α|> 1. The α  parameter is physically made accessible 
and tuned for smooth control of synchronization. This does not 
affect the stability of synchronization since the stability depends 
only upon the Hurwitz parameter pi. The control of 
synchronization is demonstrated experimentally using an 
electronic version of a Sprott system. 
 

III. OPCL COUPLING: SPROTT SYSTEM 
 

  A Sprott system [25] with a single quadratic nonlinearity is 
chosen for analysis. This example evidences how OPCL 
coupling is applicable to any system without restricting to 
inversion symmetric system in the AS regime. An inversion 
symmetric system has a dynamical flow that follows a rule, 
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Sprott oscillator-1 after coupling: 
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Sprott Oscillator-2 after coupling: 
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The mutual interaction between the oscillators is now 
established in (9a) and (9b) using coupling terms Dxi(x,g2) and 
Dyi(y,g1), (i=1, 2, 3). This Sprott system is not inversion 
symmetric as seen from its dynamical flow. 
 
Case-I: The CS or AS is realized by altering the size of 
oscillator-2 and keeping oscllator-1 unchanged. For identical 
systems, b1=b2=b, the Jacobian of the interacting systems are, 
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The H matrix is constructed from the Jacobian by replacing its 
element connected to the  state variable by a constant p,  
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The characteristic equation 7(a) of the H matrix in (11) is easily 
obtained where its parameters are defined as a1=1, a2=b – p,  
a3=2b. It can be checked that the RH criterion (7b) is satisfied 

for a choice of p<-b. This makes the H matrix to be a Hurwitz 
with its eigenvalues all having negative real parts, and thereby 
the asymptotically stable synchronization between the mutually 
coupled oscillators is established.  By substituting (10) and (11) 
in 3(c)-(d) and assuming Sx=Sy=0.5, the coupling terms are, 
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 In (12), p=-1 and α=-2 are chosen to realize AS and 
amplification in oscillator-2. Numerical results of two mutually 
coupled Sprott oscillators (9a) and (9b) with coupling term (12) 
are presented in Fig.1. The 2D projection of both the oscillators 
are shown in Fig.1(a): oscillator-1 is plotted as x1 vs x3 in solid 
line and oscillator-2 is plotted as y1 vs y3 in dotted line.  The 
oscillator-1 is in original size and the oscillator-2 is inverted and 
amplified as expected for α=-2. The x1 vs. y1 plot in Fig.1(b) 
confirms AS between the oscillators. The time series plots in 
Fig.1(c)-(e) show that all three similar pairs of state variables 
are in AS state while xi in solid lines for oscillator-1 is smaller  
than yi in dotted lines for oscillator-2. All three error functions, 
ei=(yi+2xi), i=1,2,3 in Fig.1(f) show that they exponentially 
converges to zero and it confirms that  oscillator-2 is inverted 
and amplified by a factor of two.  
Case-II: The CS or AS is realized by altering the size of 
oscillator-1 and keeping oscllator-2 unchanged. The coupling 
terms are now defined using  (8a) and (8b), 
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To realize CS and amplification in the oscillator-1, p=-1 and  
α=2 are chosen. Numerical results are presented in Fig.2. The 
2D projection of both the oscillators are shown in Fig.2(a): 
oscillator-1 is plotted as x1 vs. x3 shown in dotted line and 
oscillator-2 is plotted as y1 vs y3 shown in solid line. It is clearly 
seen that oscillator-1 is amplified in size than the oscillator-2, as 
expected for α=2. The y1 vs. x1 plot in Fig.1(b) confirms CS 
between the oscillators.  Alternatively, a CS state can be 
realized in Case I while AS can be realized in Case II. It is only 
a matter choice of the sign of α.  
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IV. OPCL COUPLING: EXPERIMENT 

 
   An electronic circuit of the Sprott oscillators and the coupling 
are designed and, the method of targeting and control of 
synchronization is implemented. As discussed in the previous 
section, the choice of the sign of α decides the type of 
synchronization and their magnitude decides the scale of the 
attractor size. It is shown that this parameter is accessible and 
can be precisely tuned to control synchronization and to induce 
a smooth transition from one to the other form of 
synchronization without loss of synchrony.  
 
A. Bidirectional Mode 

 
  The circuit of two mutually coupled Sprott oscillators (9a) and 
(9b) and the coupling (12) is shown in Fig.3. The oscillator-1 
(OS1) is constructed using three inverting integrators (U1, U3-
U4: μA741), one inverting amplifier (U2: μA741) and one 
multiplier (UA1:AD633). The integrators derive three 
corresponding state variables as their dynamic output voltages 
while the multiplier derives the only single quadratic 
nonlinearity in the Sprott system 9(a). The oscillator-2 (OS2) is 
constructed, in a similar fashion, using three integrators (U5, 
U7-U8), one inverter U6 (μA741) and one multiplier UA2 
(AD633). R1 or R9 decides the b parameter. Taking α=-2  and 
p=-1, the coupling circuit is built using three multipliers (UA3-
UA5) and two summing amplifier (U9,U12) and two inverting  
amplifiers (U10-U11). The output voltages of (U1,U3,U4) of 
OS1 oscillator and (U5,U7,U8) of OS2 oscillator are the analogs 
of (x1, x2, x3) and (y1,  y2,  y3) respectively. Four variables at a time 
(two similar pairs of voltages from two oscillators) are measured 
using a 4-channel digital oscilloscope (Yokogawa DL9140, 
1GHZ, 5GS/s). Experimental observations are shown in  Fig.4. 
Upper row: 2D projection of the OS1 attractor is shown at left 
as a plot of outputs of U1 (x1) vs. U4 (actually observed inverted 
x3). The 2D projection of the OS2 attractor is plotted in the 
middle using outputs of U5 (y1) vs. U8 (inverted y3). All axes 
are in same scale to confirm that OS2 is inverted and enlarged 
while OS1 remains unchanged. The OS2 attractor is actually 
enlarged twice compared to the OS1 attractor. The plot of 
outputs of U1 (x1) vs. U5 (y1) at right confirms AS. Lower row:  
Time series measured at outputs of U1 (x1) and U5 (y1) is shown 
at left, outputs of U3 (x2) and U7 (y2) in the middle and, U4 (x3) 
and U8 (y3) at right and confirms that OS1 and OS2 are in AS. 
Lower time series of OS2 in all three panels are clearly enlarged 
twice and in AS with upper time series of OS1. Experimental 
results in Fig.4 are clearly in good agreements with numerical 
results in Fig.1. By appropriate choice of α, one can also realize 
CS with amplification or attenuation.  
 
B. Unidirectional Mode 
  
     For unidirectional mode the OPCL coupling is easily 
obtained by taking Sx=0, Sy=1 in 3(c)-(d). Obviously, the 
coupling term is present in one of the oscillators only. To 
implement the coupling in experiment, the Sprott models in (9a) 
and (9b) are used again when the coupling term is difined by, 
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All other coupling terms in (9a) and (9b) are zero. The driver in 
(9a) and the response in (9b) are chaotic before coupling for b1 
=b2=0.22.With a choice of p =-1, one can realize  CS (α=1), AS 
(α=-1), amplification (α>±1), attenuation (α< ±1) and 
amplitude death (α=0).  The circuit of the coupled Sprott system 
is shown in the Fig.5. The Sprott oscillators are designed in a 
similar way as shown in Fig.3. The driver circuit is constructed 
using three inverting integrators with output at each node 
labeled by Vx1, Vx2, Vx3  and an inverting amplifier used to invert 
the Vx1  signal and, a multiplier IC AD633 (UA1). Similarly the 
response circuit is constructed with nodes labeled as Vy1, Vy2, 
Vy3. Using Kirchhoff’s laws at the nodes, the dynamical 
equations of the coupled Sprott oscillators are derived: 
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Response: 
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The coupling circuit D(y, αx) is obtained from (14) with a 
choice of   p=-1,  and expressed in terms of circuit components 
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where α is analogous to a constant voltage measured at node Vc. 
The Vc is obtained using a voltage divider network with 
±12VDC and resistances R5, R6 and a slow variable 
potentiometer, R7 (20kΩ).  Voltage drops at nodes Va and Vb are 
+2.4V and –2.4V for the choice of R5=R6=40kΩ.  The provision 
of upper (Va) and lower voltage cutoffs (Vb) is made to secure 
the value of  scaling factor α within the specific range (α = 
±2.4). By slowly varying the potentiometer R7, a continuous and 
smooth change from  +2.4V to –2.4V is induced at node Vc. 
Effectively α is thereby varied from +2.4 to –2.4. One can now 
easily control synchronization by making a smooth transition 
from CS to AS between OS1 and OS2, where the polarity of 
voltage at node Vc decides the type of synchrony and a change 
in voltage level at Vc alters the size of the response attractor. At 
the intermediate value, Vc=0 (α=0), the response oscillator is 
forced to oscillation death. All throughout this transition 
process, the response oscillator never loses synchrony with the 
driver. A precise and smooth control of synchronization and 
scaling of the response attractor size is thereby implemented. 
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  The oscilloscope pictures(Yokogawa DL9140, 1GHZ, 5GS/s) 
are presented in Fig.6. Upper row: An array of 2D projections 
of oscillator-2 (OS2) is plotted Vy1 vs. Vy2 from left  to right as 
measured for different α values.  OS2 attractor size is larger at 
left, second from left is identical  to the original size and 
reduced to zero size in the middle. Then  it become identical to 
original size at right to the middle and, amplified at right but in 
opposite phase. This variation in size is  stimulated by the Vc or 
its analog α parameter. Left panel shows OS2 is amplified 2.4 
times to OS1 for a choice of α=2.4, second from the left shows 
OS2 identical in size to OS1 for α=1, amplitude death of OS2 
for α=0 at  center, second from the right shows OS2 is again 
identical to OS1 for α= -1 but opposite facing, right side shows 
OS2 is  2.4 times larger to OS1 and opposite facing for α=-2.4. 
Middle row: An array of 2D projections plotted Vy1 vs Vx1, 
where Vy1 in the x-axis and Vx1 in the y-axis manifesting the 
synchronization manifold. All axes are in the same scale. Each 
of these oscilloscope pictures corresponds to the picture exactly 
in the upper row. First two plots of the left confirm that OS1 and 
OS2 are CS for positive values of α=(2.4, 1), center shows 
amplitude death of OS2 for α=0, and last two plots at the right 
confirm that OS1 and OS2 are in AS for negative values of α=(-
2.4, -1). Lower row: Time series of OS1 and OS2 measured at 
Vx1 and Vy1 are plotted for three different α values. At left, OS2 
is amplified compared to OS1 in CS mode(α= 2.4), at center, 
OS2 is in amplitude death while OS1 is oscillatory, at right OS2 
is amplified compared to OS1 but in AS mode(α= -2.4).  
 

V. CONCLUSION 
 
  An open-plus-closed-loop (OPCL) coupling design is explored 
for engineering synchronization in chaotic oscillators. A general 
scheme is described as applicable for unidirectional as well as 
bidirectional coupling mode, which is capable to realize a 
desired response such as CS, AS states in chaotic systems. A 
scaling factor is introduced in the definition of coupling that 
allows amplification or attenuation of one attractor relative to 
another. The theoretical details of the method how to design the 
OPCL based coupling is given and illustrated with numerical 
examples of a Sprott system. The OPCL based coupling design 
is physically implemented for unidirectional and bidirectional 
modes in electronic circuits using Sprott oscillators. It is 
demonstrated through an experiment that by continuously 
varying a scaling factor one can make a transition from CS to 
AS via AD in a response oscillator under unidirectional 
coupling mode. A precise and smooth control of 
synchronization in chaotic oscillators is implemented in 
electronic circuit. Most importantly, contrary to conventional 
techniques, the coupled system never loses stability during a 
transition from one to the other form of synchronization. 
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Fig.1. Coupled Sprott oscillators [b1=b2=0.25, p = -1, α= -2]: a) 2D attractor of oscillator-1 and oscillator-2 (amplified and inverted), (b) plot 
of x1 vs. y1 in AS state. Time series of (x1, y1) in (c), (x2, y2) in (d) and (x3, y3) in (e). Plot of errors, ei=(yi+2xi) in (f). 
 
 

                                       
 
Fig.2. Coupled Sprott oscillators [b1=b2=0.25, p =-1, α=2]: (a) 2D attractor of oscillator-1 (amplified version in dotted line) and oscillator-2 
(solid line), (b) plot of y1 vs. x1 in CS state.  
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Fig.3.Two mutually coupled Sprott circuits: inverting integrators U1-U4 (U5-U8), multipliers AD633 UA1 (UA2), resistances R1-R8 (R9-
16) and capacitances C1-C3 (C4-C6) are used to design the OS1 and OS2. The coupling circuit is composed of summing amplifiers (U9-
U12), multipliers (UA3-UA5) with resistances R17-R31. Components values (1% tolerance) are noted in the circuit. 
 

                                                 
 
 Fig.4.  Oscilloscope pictures. Upper row: 2D attractor of oscillator-1 at left, its amplified and inverted version in the middle of oscillator-2; 
axes in same scale. Output voltages of U1 (500mV/div.) vs. U5 (1V/div.) at right confirm AS. Lower row: time series measured at U1 
(upper) and U5 (below) at left, U3 (upper) and U7 (below) at middle and U4 (upper) and U8 (below) at right confirm AS and amplification.  
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Fig.5 Coupled Sprott circuit:  Inverting  integrators U1-U4 (U5-U8), multipliers AD633 UA1(UA2), resistances R(10 kΩ) and capacitances 
C(10 nF) and labeled resistances with value are used to design the  OS1 and OS2. The coupling circuit is composed of summing amplifiers, 
multipliers with resistances. Components values (1% tolerance) are noted in the circuit. 
 
 

Fig.6.  Oscilloscope pictures. Upper row: An array of 2D attractors of response from left to right side of different mode of synchronization, CS 
with amplification, CS, AD, AS, AS with amplification. Middle row: Output voltages of U1 vs. U5 plotted  at different α value (2.4,1,0,-1,-2.4). 
Lower row: time series measured at U1 (upper) and U5 (below) at different α value:  at left α = 2.4(CS), at middle α = 0(AD) and at right α = -
2.4(AS).  

 


