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Poland
E-mail: gwasilew@p.lodz.pl

Grzegorz Kudra
Department of Automatics and Biomechanics

Technical University of Ł́odź
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Abstract
A real double pendulum is steered to a neighborhood

of the upper equilibrium position by a simple swing-up
feedback control. The moment of force generated at the
suspension point is used as a control. Good controlla-
bility of the pendulum is demonstrated. The theoretical
conclusions and the efficiency of the control algorithms
are confirmed by the experiment.
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1 Introduction
The problem of controlling an inverted double pendu-

lum is considered. A feedback control (Reshmin, 2005)
is applied for steering this system to a neighborhood of
the upper unstable equilibrium position. Proposed con-
trol law is an extension of the approaches (Reshmin,
1997; Reshmin and Chernousko, 1998) to the underac-
tuated systems. In (Reshmin and Chernousko, 1998),
the problem of controlling a nonlinear system of or-
der 2n is reduced to a problem of controlling a sys-
tem of n simple independent second-order equations.
After that all nonlinearities are considered as indepen-
dent perturbations, and the control for each subsystem
is constructed based on the game-theoretic approach
(Krasovskii, 1970).
The main problems that arise in the solution of the

control problem for the investigated system are con-
nected with the fact that it is an essentially nonlinear

dynamic system. Dynamic interaction between differ-
ent degrees of freedom is typical of this system. An-
other complicating factor is that the number of controls
in the system is half as many as the number of degrees
of freedom.
Many publications have been devoted to the control

of pendulum systems. Frequently, using such well-
known systems, new control methods are approved,
and their operation and efficiency is demonstrated. In
(Formal’skii, 2006), the problem of stabilizing the ver-
tical unstable equilibrium position of a double pen-
dulum with a fixed suspension point was solved. In
(Schaefer and Cannon, 1996), the problem of stabiliz-
ing an inverted multi-link pendulum was solved using
horizontal movements of the suspension point. Some
other control methods applicable to double pendulum
were developed in (Absil and Sepulchre, 2001; Fan-
toni et al., 2000; Rubi et al., 2002; Sanfelice and
Teel, 2007). Note that the distinctive feature of our
swing-up control strategy is use of the game-theoretic
approach.

2 Double pendulum
We consider a double pendulum controlled by a torque

applied to the suspension axis, see Fig. 1. The pendu-
lum consists of two rigid linksB1 andB2. The revolute
joint O1 with a horizontal axis attaches the linkB1 to
a fixed baseB0. The linksB1 andB2 are connected
by the revolute jointO2 the axis of which is parallel to
that ofO1. The motion of such a system occurs in a
vertical plane. The center of massC1 of the link B1



Figure 1. Double pendulum.

lies on the rayO1O2. The center of massC2 of the link
B2 does not lie on the axis of the jointO2. The system
is controlled by the torqueM applied to the jointO1.

3 Equations of motion
The motion of this system is governed by Lagrange’s

equations

(m2l
2
1 + I1) q̈1 +m2l1lg2 cos(q2 − q1) q̈2

−m2l1lg2 sin(q2 − q1) q̇22 = M +G0
1 sin q1 + v1

m2l1lg2 cos(q2 − q1) q̈1 + I2 q̈2

+m2l1lg2 sin(q2 − q1) q̇21 = G0
2 sin q2 + v2

G0
1 = g(m1lg1 +m2l1), G0

2 = gm2lg2

(1)
whereqi is the angle of deflection of the linkBi from
the vertical;lgi is the length of the segmentOiCi; l1
is the length of the segmentO1O2; mi is the mass of
the linkBi; Ii is the moment of inertia of the linkBi

about the axis of the jointOi; G0
i sin qi is the torque

created by the gravity force at the jointOi; vi is the
torque created by the disturbances at the jointOi; and
g is the acceleration due to gravity.
The control torqueM is subjected to the constraint

|M | ≤M0 (2)

whereM0 is a positive constant. Constraints are also

imposed on the disturbances

|v1| ≤ v0
1 , |v2| ≤ v0

2 (3)

wherev0
1 ≥ 0 andv0

2 ≥ 0 are given constants.
Introduce the dimensionless variables
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If we omit the superscript′ in the notation of the new
variablest′,M ′,G0

i
′
, v′

i, andv0
i

′
then equations (1) and

constraint (2) take the form

α q̈1 + cos(q2 − q1) q̈2 = M + w1

cos(q2 − q1) q̈1 + β q̈2 = w2

w1 = G0
1 sin q1 + sin(q2 − q1) q̇22 + v1

w2 = G0
2 sin q2 − sin(q2 − q1) q̇21 + v2

(5)

|M | ≤ 1 (6)

but at the same time the form of constraints (3) does
not change.

4 First integrals
Consider now situation (coordinated mode) when con-

trol M is chosen so that

x = q2(t)− q1(t) ≡ const (7)

Substituting (7) into the second equation of (5), we ob-
tain

(β + cosx)q̈1 = G0
2 sin(q1 + x)− sinx q̇21 + v2 (8)

It is worth mentioning that equation (8) looks like the
equation of motion of a common physical pendulum to
which the term -sinx q̇21 has been added. This term is
quadratic in the velocitẏq1.
If additionally to (7), we assume that

v2(t) ≡ const (9)



then equation (8) can be integrated

exp (q1 tanϕ)

×
[
q̇21 +

G0
2 cos(q1 + x+ ϕ) sinϕ− v2

sinx

]
= const

ϕ = arctan
(

2 sinx
β + cosx

)
(10)

In the simplest case, when

x = 0 and v2 = 0

equation (8) completely coincides with the equation of
motion of the equivalent single pendulum

(β + 1)q̈1 = G0
2 sin q1 (11)

that has the first integral

E0 =
β + 1

2
q̇21 +G0

2(cos q1 − 1) ≡ const (12)

We considerE0(q1, q̇1) as a virtual energy of the dou-
ble pendulum whenq1(t) ≈ q2(t) andv2(t) ≈ 0.

5 Problem statement
The following control problem can be formulated.

Problem 1. Find a feedback controlM(q1, q̇1, q2, q̇2)
that satisfies (6) and steers system (5) from the given
initial state

q1(0) = π, q2(0) = π

q̇1(0) = 0, q̇2(0) = 0
(13)

to the prescribed neighborhood of the upper equilib-
rium position

|q1 − 2πk| < ε, |q2 − 2πm| < ε

k,m = 0,±1,±2, . . .

|q̇1| < ε′, |q̇2| < ε′

(14)

whereε andε′ are given constants which can be arbi-
trarily small.

Remark 1. The goal is only to take the state of the sys-
tem to a neighborhood of the upright equilibrium point.
It is not necessary then to keep the pendulum for all
time.

We make certain simplifying assumptions concerning
the possibilities of the controlM and the disturbances
v1 and v2. It is assumed that on the one hand, con-
stantM0 in (2) is not too small and, on the other hand,
constantsv0

1 andv0
2 in (3) are not very large.

6 Swing-up feedback control
A bounded feedback controlM(q1, q̇1, q2, q̇2) which

satisfies (2) and brings the system (5) from the initial
state (13) to the terminal state (14) in a finite time for
any admissible disturbancesv1 and v2 satisfying (3)
can be taken in the form

M = sign(ẋ− ψ̃), ẋ 6= ψ̃

M = sign(ẋ), ẋ = ψ̃

(15)

wherex is the angle between the links

x = q2 − q1, ẋ = q̇2 − q̇1 (16)

andψ̃(x) is a switching function defined by the follow-
ing relations:

ψ̃(x) = ψ(x− x̃)

ψ(·) = −(2X| · |)1/2sign(·)

x̃ = −f sign q̇1, (sign 0 = −1)

(17)

Here,X and f are positive control parameters to be
identified. This control is of the bang-bang type and
switches between the two limiting vales, i.e.,M = ±1.
The switching curveẋ = ψ̃(x) consists of two par-
abolic arcs symmetric with respect to the point(x̃, 0),
see Fig. 2. Note that the variablẽx and the velocityq̇1
change in sign simultaneously.

Figure 2. Switching curve in casėq1 > 0.

In (Reshmin, 2005), we have proved that the con-
trol law of (15)–(17) can be used for the solution of
Problem 1 and have obtained a system of inequalities
(bounds) for the admissible values of the control para-
metersX andf . It is necessary to find such control
parameters that provide positive and at the same time
not very high swing up intensity (increasing the oscil-
lation amplitude). A specific procedure for choosing or



calculating these parameters has been also proposed.
Below, we only describe the main points of the proof.
The control (15)–(17) proposed above has a structure

that tends to maintain a pendulum configuration con-
serving the angle between the links equal tox̃. How-
ever, by (17), the quantitỹx andq̇1 reverse sign simul-
taneously. As a result, oscillating process can be di-
vided into alternating stages corresponding to the co-
ordinated (x = x̃) and the transient (x 6= x̃) con-
trol modes. Analysis of the first integral (10) shows
that the amplitude of the oscillations increases during
each stage with coordinated mode. The influence of
the stages with the transient modes is inessential. For
sufficiently small valuesf , the growth rate of the swing
of the pendulum oscillations is low. As a result, there
comes a time when the pendulum is in the vicinity of
the upper equilibrium position with sufficiently small
velocities of links. Thus, the source system (5) is in a
neighborhood of the equilibrium position (14).

7 Modifications of the control law
The control of (15)–(17) can be modified in different

ways.
Firstly, the control time in Problem 1 can be signifi-

cantly shorten, if we replace constant positive parame-
terf in (17) by a function

f(q1, q̇1) = −f0E0(q1, q̇1)
2G0

2

(18)

wheref0 is a new constant parameter andE0 is the
virtual energy defined by (12). After such replace-
ment, admissible control parametersX andf0 should
be identified. Note that according to (18)

f = f0 (19)

at the beginning and

f ≈ 0 (20)

at the end of the control process. As a result, the
swinging intensity (which can be sufficiently large at
the beginning) gradually decreases during the control
process.
Secondly, the control of (15)–(17) can be modified to

perform both the swing up task and the local stabiliza-
tion task. Numerical simulation for this more complex
problem is quite satisfactory.

8 Experimental rig
The triple pendulum rig built on January 2005 in

the Department of Automatics and Biomechanics, has
been used for the experimental control of the double
pendulum (see Fig. 3). For more details see works

(Awrejcewiczet al., 2008; Awrejcewiczet al., 2007).
The double pendulum rig has been obtained just by the
elimination of the third link together with the elements
of the third axis. The resulting double pendulum is used
in swinging up to the upper vertical position and con-
trol experiments. The control has two two-stage regula-
tion character, because the input signal (i.e. the external
forcing), can have only two values:M = ±1.718Nm.
The control system allows also switching off the exter-
nal forcing (i.e. settingM = 0), but this possibility has
not been used.

Figure 3. Experimental rig: a) triple pendulum; b) double pendu-

lum. 1 - first link (B1), 2 - second link (B2), 3 - third link; 4 -

stand; 5 - motor rotor; 6’,6” - motor stators; 7, 8, 9 - rotational po-

tentiomenters; 10 - electronic control system of the motor supplying;

11 - impulse feeders.

In order to obtain approximation of the pendulum pa-
rameters, two different cases of free motion of the dou-
ble pendulum have been recorded. Then the parameter
estimation has been performed by the use of special
program developed by G. Kudra, giving the following
results: l1 = 174 mm, m1 = 3.68 kg, m2 = 1.565
kg, lg1 = 60.2 mm, lg2 = 89.9 mm, I1 = 0.0403
kgm2, I2 = 0.0140 kgm2. Since the double pendulum
presented here is a special case of the triple pendulum,
for more information about mathematical model, para-
meters and parameters’ estimation procedure see works
(Awrejcewiczet al., 2008; Awrejcewiczet al., 2007),
where the triple pendulum was investigated.

9 The LabView control implementation
The special program has been developed by the use of

the LabView environment, which controls the double
pendulum due to the algorithm prepared by S. Resh-
min. The voltage signals from the rotational po-
tentiomenters are directly led to the National Instru-
ments measurement card of type PXI-6052E. Figure 4
presents main block of the program.
In order to swing up the pendulum from its downward

stable equilibrium position to the upright unstable equi-



Figure 4. The main block diagram of the program for the pendulum

control, developed by the use of the LabView system. Program com-

ponents: 1 - the time and the rotational potentiometers voltage mea-

surements, 2 - time and voltage processing, data tables creating, 3 -

the first approximation of the angular positions data, 4 - the second

approximation and the lead time choice, 5 - readout of the angular

positions and velocities, 6 - the algorithm choice, 7 - the control al-

gorithm, 8 - lead of the forcing turn signal, 9 - registration of angles

and forcing in the control algorithm.

Figure 5. The experimental time history of the swinging up process.

librium, the experiment has been performed. In Fig. 5,
the exemplary time history of the control process is pre-
sented. For easier observation of the angular position
of the first link, theq1 − π (red line) is plotted instead
of q1 in Fig. 5. The gradual increase of the amplitude
of the first link can be observed during the experiment
till to the 14th second, when the link passes the upright
vertical position slowing down a bit and then rotates
again. For this moment, we cannot stabilize the upright
vertical equilibrium position. Deviation of the angu-

lar position of each the link from the upright vertical
equilibrium position during the motion do not exceed
0.5 rad (blue line in the diagram). The amplitude of
the external forcing in each the experiment is the same
and is equal to 1.718 Nm. The green line on the dia-
gram presents the computational valueMn used in the
control algorithms.

10 Conclusions
The control presented above is applied to the real un-

deractuated system with uncertainties. The control is
a feedback control of the formM(q1, q̇1, q2, q̇2) and is
constructed for any parameters of the pendulum links.
The geometric constraints imposed on the controlling
torque produced at the suspension point are taken into
account.
The approach is based on the decomposition of the

system into simple subsystems. Methods of optimal
control and differential games are used to obtain ex-
plicit formulas for feedback control. The control law
proposed has a simple structure.
This approach does not assume the external forces to

be known; they can be uncertain, and only bounds on
them are essential. The obtained feedback control is ro-
bust, i.e., it can cope with additional small disturbances
and parameter variations.
The control strategy presented in section 6 allows

performing both the swing up and the local, for a short
time instant, stabilization tasks (it will be shown on a
video movie during presentation).
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