
 
 
 
 
 
 
 
 

IDENTIFICATION OF FREQUENCY OF BIASED HARMONIC SIGNAL 
 
 

Stanislav Aranovskiy∗, Alexey Bobtsov∗,1, Artem Kremlev∗,2,                     
Nikolay Nikolaev∗,1, Olga Slita∗∗ 

 
 

∗ Department of Control Systems and Informatics, Saint-Petersburg State University 
of Information Technologies Mechanics and Optics, Kronverkski av. 49, 197101, 

Saint-Petersburg, Russia,  
E-mail: bobtsov@mail.ru 

∗∗ Department of Mechatronics and Robotics, Baltic State Technical University, 1-st 
Krasnoarmeiskaya st. 1, 190008, Saint-Petersburg, Russia 

 
 

Abstract: The paper is dedicated to problem of identification of unknown frequency 
of a biased sinusoidal signal )sin()( 0 φωσσ ++= tty . A new proposed approach to 
estimation of frequency of biased sinusoidal signal is robust with regard to 
unaccounted disturbances, presenting in measurement of effective signal. Unlike 
known analogs, this approach allows to regulate time of estimation of unknown 
frequency ω. The proposed approach also allows online amplitude and bias 
estimation. Dimension of the proposed identification algorithm is less than known 
analogs have. Copyright © 2007 IFAC 
 
Keywords: Identification, Harmonic signal, Robustness, Estimation, Disturbance 

 
 
 
 

1. INTRODUCTION12 
 
This paper deals with problem of frequency 
identification of a sinusoidal signal 

)sin()( 0 φωσσ ++= tty  for any unknown constant 
values 0σ , σ , φ. Problem of frequency 
identification of a sinusoidal signal is a very 
important basic problem, which has different 
applications in theoretical and engineering 
disciplines, see (Clarke, 2001). Today we can mark 
out many different approaches dedicated to 
identification of unknown frequency of a sinusoidal 
function, see (Bodson and Douglas, 1997; Hsu, et al., 
1999; Mojiri and Bakhshai, 2004; Marino and Tomei, 
2002;  Xia, 2002;  Obregón-Pulido, et al., 2002; 
Bobtsov, et al., 2002; Hou, 2005). Let us note that 
today approaches to identification of parameter 

0>ω  are not limited with studying the case of a 
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single sinusoid, see (Bodson and Douglas, 1997; 
Hsu, et al., 1999; Mojiri and Bakhshai, 2004). In 
particular, paper (Hou M, (2005) considers problem 
of frequency identification of a biased sinusoidal 
signal, and papers (Marino and Tomei, 2002; Xia, 
2002; Obregón-Pulido, et al., 2002; Bobtsov, et al., 
2002) present common case of a harmonic signal, 
which is a sum of n sinusoidal functions with 
different frequencies. 
 
Algorithm proposed in this paper has dynamic order 
equal to three, and in its turn, that is better than the 
most known results, published in (Marino and Tomei, 
2002; Xia, 2002; Obregón-Pulido, et al., 2002; 
Bobtsov, et al., 2002; Hou, 2005). In (Xia, 2002; 
Obregón-Pulido, et al., 2002; Bobtsov, et al., 2002; 
Hou, 2005) minimal dimension of dynamic order of 
the algorithm is four, and in (Marino and Tomei, 
2002) dimension of the algorithm amounts to nine. 
Besides, algorithm of identification, proposed in the 
given paper allows to regulate rate of convergence of 
tuned parameter (estimation of frequency of signal 

)sin()( 0 φωσσ ++= tty ) and has robust properties 
with regard to unaccounted disturbances. 
 



2. PROBLEM STATEMENT 
 

Consider measured signal of the following view 
 

)sin()( 0 φωσσ ++= tty ,  (1) 
 
which is a biased sinusoid with unknown bias σ 0 and 
amplitude σ, unknown frequency ω  and unknown 
phase φ.  
 
Let us formulate purpose of control as design of 
identification algorithm, which would ensure 
realization of condition 
 

     0)(ˆlim =−
∞→

t
t

ωω ,  (2) 

 
where )(ˆ tω  is a current estimation of parameter ω 
for any σ 0, σ, φ and 0>ω . 
 
 

3. MAIN RESULT 
 

It is known that for generating of signal (1) it is 
possible to use differential equation of the view (3) 
 

)()()( 2 tytyty &&&&& θω =−= ,  (3) 
 

where 2ωθ −=  is a constant parameter. 
 
Lemma. Consider an auxiliary second-order filter 
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where p is differentiation operator and  number 

0>α . 
Then differential equation (3) can be rewritten in the 
form  
 

)()()()(2)( 2 ttttty yεςθςαςα +++= &&&&& ,   (6) 
 
where )(tyε  is exponentially decaying function of 
time caused by nonzero initial conditions. 
Proof. After Laplace transform of equation (3) we 
obtain 
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where s is complex variable, { })()( tyLsY =  is 
Laplace image of signal y(t), and polynomial )(sD  
denotes sum of all terms, containing nonzero initial 
conditions.  
From equation (7) we find 
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where exponentially decaying function of time 

})/()({)( 21 αε += − ssDLty  is determined by 
nonzero initial conditions. 
Substituting (5) into equation (8) we obtain 
 

)()()()(2)( 2 ttttty yεςθςαςα +++= &&&&& , 
 
which was to be proved. 
 
Remark 1. As exponentially decaying function 

})/()({)( 21 αε += − ssDLty  depends on parameter α, 

it is possible to accelerate convergence of )(tyε  to 

zero by increasing α. 
 
Now, on base of lemma results one can formulate 
scheme of unknown parameter θ identification. First 
let us suppose that function )(ty&  is measured. Then, 
neglecting exponentially decaying item )(tyε , ideal 
identification algorithm can be written the following 
way 
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)(ˆ)(ˆ tt θω = ,  (9) 

 
where function )()(2)()( 2 tttytz ςαςα &&&& −−=  and 
number 0>k . 
The following statement proves efficiency of ideal 
identification algorithm for achieving purpose (2). 
 
Proposition. Let algorithm of identification of 
unknown parameter θ  have the view 
 

))(ˆ)(()(ˆ 2 ttkt θθςθ −= &
& , 

 
where number 0>k , and function )(tς  is solution 
of differential equation (4). 
Then purpose of the view (2) is achieved. 
 
Proof of the proposition. Consider estimation error of 
parameter θ  of the following form 
 

)(ˆ)(~ tt θθθ −=  .   (10) 



 
After differentiation of equation (10) we have 
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Solving differential equation (11) we obtain 
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where function 
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It is obvious that as polynomial 2)( α+p   is Hurwitz, 
function )(tς  takes the view 
 

Δ+++= )sin()( 0 φωσσς tt , (14) 
 

where 0σ , σ  and φ  are constant coefficients 
depending on parameters of signal 

)sin()( 0 φωσσ ++= tty  and number α , and Δ  is 
an exponentially decaying item, caused by transients. 
Neglecting Δ  and differentiating (14) we obtain 
 

)cos()( φωωσς += tt& . 
 

Substituting )cos()( φωωσς += tt&  into (13) we 
have 
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where function  
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is bounded for any t, and number 
2

22

0
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Let us substitute (15) into (12) 
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It follows from equation (16) that 0~lim =
∞→
θ

t
, and 

hence )()(ˆ)(ˆ ttt ωθω →=  for ∞→t . Proposition 

is proven. 
 
Remark 2. It follows from equation (16) that function 

)(ˆ tθ  converges faster to parameter θ  by increasing 
coefficient k. It means that it is possible to reduce or 
increase rate of convergence of the tuned parameter 
to its real value in identification algorithm (9) 
changing coefficient k.   
 
Remark 3. It follows from equation (16) that system 
(11) is exponentially stable. In its turn it ensures 
robustness of identification algorithm with respect to 
external disturbances.  
 
However, in our case signal y(t) is only measured but 
not its derivatives. To derive realizable scheme of 
identification algorithm let us consider the following  
variable 
 

)()()(ˆ)( tytktt ςθχ &−= .  (17) 
 
Differentiating equation (17) we obtain 
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From equations (17), (18) we receive realizable 
identification algorithm of the following view 
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Remark 4. Let us notice that proposed approach also 
allows online amplitude and bias estimation. From 
equation (6) we obtain 
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where )(ˆ ty&  and )(ˆ ty&&  are current estimations of )(ty&  
and )(ty&&  correspondingly.  
 
 



Let us consider the following variables 
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θ
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From equations (22), (24) we obtain realizable online 
amplitude and bias estimator 
 

)(ˆ
)(ˆ

)(ˆ
)(ˆ 2

2
t

t
tyt β

θ
σ +

−
=

&
,                   (25) 
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4. EXAMPLE 
 

Let us consider problem of frequency identification 
and bias and amplitude estimation of a biased 
sinusoidal signal without disturbances and in 
presence of disturbances to illustrate efficiency of 
identification algorithm (19)-(21). Figures 1-6 show 
graphs of tuning parameter )(ˆ tθ  and estimation of 
parameters )(ˆ tσ  and )(ˆ0 tσ  (see remark 4) for the 
biased sinusoidal signal tty 2sin2)( += . Results of 
computer simulation show that tuned parameter 

)(ˆ tθ converges faster to real value θ  because of 
increasing coefficient k (see remark 2).  
 
Figures 7-12 show graphs of tuning parameter )(ˆ tθ  
and estimation of parameters )(ˆ tσ  и )(ˆ0 tσ  for the 
biased sinusoidal signal tty 4sin23)( +−= . Like in 
previous example rate of convergence of estimate 

)(ˆ tθ  grows by increasing parameter k.  
 

 
 

Fig. 1. Function )(ˆ tθ  for 1=α  and 10=k  
 

 
 

Fig. 2. Function )(ˆ tσ   for 1=α  and 10=k  
 

 
 

Fig. 3. Function )(ˆ0 tσ  for 1=α  and 10=k  
 

 
 

Fig. 4. Function )(ˆ tθ  for 2=α  and 50=k  

 
 

Fig. 5. Function )(ˆ tσ  for 2=α  and 50=k  
 



 
 
Fig. 6. Function )(ˆ0 tσ  for 2=α  and 50=k  

 

 
 

Fig. 7. Function )(ˆ tθ  for 1=α  and 10=k  
 

 
 
Fig. 8. Function )(ˆ tσ  for 1=α  and 10=k  

 
 

Fig. 9. Function )(ˆ0 tσ  for 1=α  and 10=k  
 

 
 
Fig. 10. Function )(ˆ tθ  for 2=α  and 50=k  
 

 
 

Fig. 11. Function )(ˆ tσ  for 2=α  and 50=k  
 

 
 

Fig. 12. Function )(ˆ0 tσ  for 2=α  and 50=k  
 

Figures 13-15 show graphs of parameter )(ˆ tθ  tuning 
and estimation of parameters )(ˆ tσ  и )(ˆ0 tσ  for the 
biased sinusoidal signal tty 4sin23)( +−=  disturbed 

by Gaussian noise of zero mean and variance 21.0 . 
Computer simulation illustrates that robustness 
properties keep safe with respect to unaccounted 
disturbances (see remark 3). 
 



 
 

Fig. 13. Function )(ˆ tθ  for 1=α  and 10=k  
 

 
 
Fig. 14. Function )(ˆ tσ  for 1=α  and 10=k  
 

 
 

Fig. 15. Function )(ˆ0 tσ  for 1=α  and 10=k  
 

 
5. CONCLUSION 

 
Problem of identification of frequency of a sinusoidal 
signal )sin()( 0 φωσσ ++= tty  has been  considered 
for any unknown constant values 0σ , σ , φ, 0>ω . 
Designed algorithm of identification (19)-(21): 
– is stable with regard to unaccounted disturbances 

presenting in measurement of effective biased 
sinusoidal signal;  

– has been shown to allow accelerating rate of 
convergence of estimate )(ˆ tθ  to θ  because of 

increasing coefficient k (see remarks 1 and 2 and 
example); 

– has been shown to have ability of extension (22)-
(26) for online estimation of amplitude and bias 
with no increase of dynamic order (see remark 4 
and example); 

– has also been shown to have the least dynamic 
order in comparison with works (Marino and 
Tomei, 2002; Xia, 2002; Obregón-Pulido, et al., 
2002; Bobtsov, et al., 2002; Hou, 2005). 

 
 

REFERENCES 
 

Bobtsov A., Lyamin A., Romasheva D. (2002). 
Algorithm of parameter’s identification of 
polyharmonic function. 15 th IFAC World 
Congress on Automatic Control. Barcelona, 
Spain. 

Bodson M., Douglas S.C. (1997). Adaptive 
algorithms for the rejection of periodic 
disturbances with unknown frequencies. 
Automatica, 33, 2213-2221. 

Clarke D. W. (2001). On the design of adaptive notch 
filters. Int. J. Adapt. Control, 15, 715–744. 

Hou M. (2005). Amplitude and frequency estimator 
of a sinusoid. IEEE Transactions on Automatic 
Control, 50,  855–858. 

Hsu L., Ortega R., Damm G. (1999). A globally 
convergent frequency estimator. IEEE 
Transactions on Automatic Control, 46, 967-
972.  

Mojiri M.  and  Bakhshai A. R. (2004).  An Adaptive 
Notch Filter for Frequency Estimation of a 
Periodic Signal. IEEE Transactions on 
Automatic Control, 49, 314-318.  

Marino R. and Tomei R. (2002). Global Estimation 
of Unknown Frequencies. IEEE Transactions on 
Automatic Control, 47, 1324–1328. 

Obregón-Pulido G., Castillo-Toledo B. and 
Loukianov A. A. (2002). Globally Convergent 
Estimator for n–Frequencies. IEEE Transactions 
on Automatic Control, 47, 857–863.  

Xia X. (2002). Global Frequency Estimation Using 
Adaptive Identifiers. IEEE Transactions on 
Automatic Control, 47, 1188–1193. 


