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Abstract: The paper discusses the problems of control by large space structure (LSS). The mathemati-
cal technique to solve the task of computer-based derivation and transformations of the current motion 
equations of the LSS is proposed. Some problems in the LSS control in the course of its assembly and 
possible ways and means to overcome them are considered. The task of an optimal trajectory choice of 
the LSS in-orbit assembly is proposed. Possibility of using the “portrait” of the construction dynamics 
for analysis and design of the dynamic characteristics of the LSS is discussed. Three strategies of the 
LSS adaptive control were considered. This paper is a survey of the researches that were carried out in 
the Trapeznikov Institute of Control Sciences. 
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1. INTRODUCTION 
 
Development of some global projects for the next stage of 
mastering the space has started in the mid-1980s. It was re-
quired design of a new type of spacecraft that was called as 
the large space structure (LSS) (Nurre et al., 1984) (or dis-
cretely evolving structure). The scale of these projects may 
be illustrated by well-known examples. For instance, in order 
to replace the decreasing resources of energy carriers, it is 
planned to construct in the near-earth space the large solar 
power stations provided with solar cell panels of size running 
up to that of the football ground. There exists also a project of 
using the large orbiting reflectors to illuminate by solar light 
the northern regions during the polar nights in order to pro-
mote development of these under populated territories. The 
most important direction in development of astronomy lies in 
design and deployment of large radio-telescopes in the near-
earth orbit. 
 
It is clear that realization of such projects requires insertion 
into orbits or in-orbit assembly of large structures and control 
of their angular position. At the same time, the specific prop-
erties of this new class of objects such as the infra-low (of the 
order of 0,01÷0,1 Hz) structural vibrations approaching the 
control frequencies of the LSS "rigid" motion, impossibility 
of carrying out the ground-based checkout tests and, as the 
result, very poor definiteness not only of the object model 
coefficients but its structure as well, almost complete lack of 
external and internal damping of the elastic oscillations, and 
large number of the LSS degrees of freedom suggested the 
following conclusion which appeared in the USA Govern-
ment-owned journal (Nurre et al., 1984): "…All solutions of 
the problems of control of the elastic satellites that were by 
now established by the international scientific community 
only superficially touched upon the specificity that properly 
manifests itself only in the problems of controlling the large 

space structures, a new class of the space objects of the near 
future. Therefore, new efforts of the experts are required to 
solve these problems which are important for the entire man-
kind". 
 
Such objects as LSS can not be inserted into orbit because of 
their desirable size. So it is necessary to realize step-by-step 
in-orbit LSS assembly. In the course of the assembly LSS 
passes three qualitatively different periods of its existence. 

1. The initial period is the rigid carrying body. 
2. Once the first construction flexible element and some 

other flexible elements are attached to the assembled object 
begins to exhibit the properties of a flexible mechanical sys-
tem, which is characterized by the presence of one or several 
comparatively high-frequency (∼1÷10 Hz) vibration modes. 
Such type of the object usually is called as flexible space-
craft. 

3. As the number of the flexible elements increases, the 
assembled object turns into a hard-to-control system. Such 
system is distinguished by a big inertia moment and many 
low elastic modes frequencies (<0.1 Hz). These frequencies 
close with the fundamental frequency of the "rigid" motion of 
the object. Such space object is LSS. 

 
Hence LSS in the course of its in-orbit assembly is discretely 
evolving structure (DES). As the control object it is multi-
frequency oscillating system with discretely time-varying 
parameters and number of freedom degrees. 
 
It should be mentioned that despite the efforts of the scien-
tists of many countries (Putz, 1999; Khang et al., 1976; Wo-
erkom, 1993; Rutkovsky and Sukhanov, 1996), the problem 
of creating on a near-Earth orbit a large space structure suit-
able for solving the aforementioned and some other important 
problems of the new stage of space development (Putz, 1999; 
Buyakas, 1990; Bekey, 1999) in fact remains still unsolved. 



 

Only in single paper ( Nakasuka et al., 2007) the authors de-
scribe the results of deploying large "Furoshiki" net in space. 
But this object is not the LSS. It is in-orbit deploying object 
of small sizes. Nevertheless we can consider it as a predeces-
sor of the DES. 
 
In this work it is adduced the survey of the papers that are 
due to DES control and that were performed in the Institute 
of Control Sciences, Russian Academy of Sciences (Mos-
cow). Mathematical models of DES, principles of step-by-
step in-orbit their assembly and methods of design of the con-
trol systems for such space structures are considered. 

2. MATHEMATICAL MODEL OF DES 
 

A DES of a sufficiently simple form, which can be repre-
sented by umbrella-type structure (Zemlyakov et al., 2007; 
Glumov et al., 2003; Glumov et al., 2005) is considered. In 
such DES, the passive bodies, the rods that form the required 
frame surface, are sequentially attached to the carrying body 
and to each other. Although the rods are supposed to be rigid 
bodies, we take into account the link elasticity at their at-
tachment points (it is possible to consider the rods as a 
weightless elastic ones, which are attached to carrying body 
and to each other rigidly). 
 
In Zemlyakov et al. (2007) the mathematical technique to 
support the on-line computer-based derivation of the current 
mathematical model of the three-dimensional motion of the 
umbrella-type DES is developed. 
 
In the course of designing the DES, assembling it in orbit, or 
while it is functioning, the necessity may arise to obtain the 
mathematical model of motion for the case when some of the 
generalized coordinates take constant values and become the 
parameters of the model. For instance, for one reason or oth-
er, some attached rods lose their degree of freedom. The 
common method of designing the control system of the 
spacecraft based on the mathematical model of its two-
dimensional motion can be another example. The computer-
based method of deriving the mathematical model of the DES 
motion have taken into account all special cases.   
As the result it was developed: 

1. Mathematical technique for computer-based deriva-
tion of the three-dimensional motion equations for the DES 
of complete structure (LSS). 

2. Mathematical technique for computer-based deriva-
tion of the three-dimensional motion equations for the DES 
of any intermediate structure and structure with extra con-
straints imposed. 

3. Computer-based linearization of the mathematical 
model for all special cases. 

4. Computer-based reducing the linearized mathematical 
model of the DES motion to the main (normal) coordinates. 

5. Computer-based construction of mathematical models 
of partial motions with respect to each of the controlled 
coordinates. 

6. Computer-based constructing modal-physical models 
of partial motions. 

Obtained results are constructive and can be used for getting 
all types of the DES mathematical models in symbolic (Ma-
ple) and in numerical (Matlab) forms. 
 
As an example in Glumov et al. (2003) it was considered two-
dimensional motion of the structure (Fig. 1) which consists of 
a central (carrying) body of mass m0 and inertia moment J0. 
The radial rod elements of the frames of the first, second, and 
subsequent levels are attached in a certain sequence to the 
carrying body. Each element is regarded as a weightless elas-
tic rod of flexural rigidity Bij, length rij, and mass mij lumped 
at the free end and taking into account the reduced mass of 
the rod and fitting mounting. We agree to call one or more 
serially connected elementary units of a given kind the i-th 
( 1, ii n= ) frame branch. At that, { }0 ,i ir α  are the polar coordi-
nates of the points oi where the i-th frame branch is attached 
to the central body. The totality of all elements of the DES 
frame that are like (in the number of place on the branch) but 
are not connected to each other will be called the j-th frame 
level, where 1, jj n=  is the level number. The frame elements 
are rigidly connected to the body and each other. 
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Fig. 1. Generalized umbrella-type structure 
 

The number of the assembly stage is denoted by 0,n N= , 
where N is the total number of the attached elements, 

1

jn

j
j

N s
=

= ∑ , were sj is the total number of the elements in the j-

th level.. The intermediate DES structure obtained at the n-th 
stage and remaining unchanged (fixed) until attachment of 
the next element is denoted here by Fn. Positioning of the 
central DES body at the initial point of assembly corresponds 
to the structure F0. The final structure FN defines the com-
pleted form of LSS.  
 
Further procedure of forming the package of DES models 
will be considered using for simplicity structure of an um-
brella-type having at the final stage two levels of develop-
ment ( 2jn = ) of which the first level has s1 = n1 elementary 
frame elements, and the second level has s2 ≤ n1 elements. 
 



 

Using the results of the paper (Zemlyakov et al., 2007) by 
computer-based derivation and transformations of DES mo-
tion equations and taking into account the aforementioned 
parameters of the DES the required mathematical model in 
the symbol form was obtained as follows: 
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elastic elements of DES; 
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main axial moment of inertia of the "equivalent" rigid DES 
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= −∑  is the squared dis-

tance between the center of mass of the entire system and the 
center of mass of the main body. 
 
The generalized forces in the right-hand sides of the equation 
system (1), which depend on the means of creating the con-
trol forces and on the form of perturbations, are determined 
by a well-known procedure. If the control moment ( )M u  is 
lumped and applied to the main body, then in (1) we get  

0),(
21
===

ii
QQuMQ φφϑ . 

 
The angular deviation of the axes of the carrying body from 
the axes of the basic coordinate system (ϑ) is the main coor-
dinate controlled to orientate the DES. If there is no need to 
control the form of DES surface in the course of the assem-
bly, then the model (1), which describes not only the con-
trolled coordinate ϑ, but also the coordinates of the form of 
surface ],,[ ijijij r φα , is redundant. In this case, it is more con-
venient to describe dynamics of such elastic objects by the 
modal-physical model (MPM). 
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where x qϑ∈�  is the controlled coordinate of the carrying 
body; x  is the coordinate of the transfer (rigid) motion; �x  is 
the additional motion of the carrying body due to the influ-
ence of the flexible elements; ,i n i nkω ��  are the fundamental 
frequencies and the excitability coefficients of the elastic 
modes; n is the number of the flexible carried elements at the 
n-th stage of the assembly; N is the total number of attached 
elements; ( )M u  is the control action; u is the control law (the 
input signal of the orientation system actuator device); 

( )n cI I n=  is the inertia moment of the construction at the n-
th stage of the assembly, nF , ( 0,1,2,...,n N= ) defines MPM of 
the object at the n-th stage of its assembly in the orbit. Index 

0n =  identifies the MPM of the carrying body: 
 

0 0 00 : ( ) , ( ) ( )F x m u m u M u I= =�� .              (3) 
  

At this stage, carrying body is set up, oriented and stabilized 
with the accuracy, which is need for the next assembly stag-
es. 
 
From system (2) we get the set of transfer functions: 
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where 1(0, ), { , , }, 1,n in in nn N k J i nλ ω −∈ = =�� � . 
 
3. APPARENT PROBLEMS OF LSS CONTROL IN THE 
COURSE OF ITS ASSEMBLY AND POSSIBLE WAYS 

AND MEANS TO OVERCOME THEM 
 

Large space structure is the third and the main period of the 
DES existence. 
 
Multiple problems of orientation control of the LSS's defined 
as time-invariable mechanical systems are discussed in nu-
merous publications of which a hundred was analyzed in 
(Nurre et al., 1984). Nevertheless, the interest in this problem 
does not abate seemingly because of the lack of service-tested 
methods and algorithms to control this class of objects (Kirk, 
Ed.,1990, 1993, 1996, 1999, 2002, 2005; Woerkom,1993; 
Rutkovsky and Sukhanov, 1996; Rutkovsky et al., 2005a). At 
the same time, new problems involved in the in-orbit LSS 
assembly (Putz, 1999; Buyakas, 1990; Bekey, 1999; Glumov 
et al., 2005a) and the methods of control of the structure vary-
ing discretely in the course of assembly (Glumov et al., 2004; 
Frolov et al., 2000) are appearing. Their study is now at the 
initial stage and needs special attention because the in-orbit 
realization of the new class objects of the space technology, 
large space structures intended for various purposes, eventu-
ally depends namely on solution of these problems. The main 
difficulties arising at the design of the control systems for the 
objects like DES's are the same as in the case of LSS's and 
include the following. 
 
(A) Problem of large model dimensionality growing with the 
developing structure. The arising difficulties of controller 
design are overcome by model reduction. However, the mod-
es "lost" at that in model (2) are excited in the course of 



 

control and result in "over-control" and "excessive observa-
tions"  (Nurre et al., 1984) not only causing lower precision 
but sometimes even loss of system stability (Woerkom,1993; 
Rutkovsky and Sukhanov, 1996). The requirements on the 
designed DES control system that are necessary to solve this 
problem lie in providing stability and control performance in 
the conditions of varying parameters and the form of the 
model itself, that is, in designing algorithms that meet the 
conditions for robust control of the object over its entire life 
time. 
 
(B) Problem of poor definiteness of the LSS models due to 
the infeasibility of the ground-based testing of the completely 
assembled structure with the aim of specifying the model 
coefficients. Its solution is traditionally based on using vari-
ous methods of identification (Nurre et al., 1984; Rutkovsky 
and Sukhanov, 1992; Banichuk, 1993; Kharchenkov and 
Shubin, 1998; Ermilova et al., 2004)  and correcting the im-
precisely defined parameters of the LSS model from the re-
sults of the in-orbit experiments. Using the experimental re-
sults of DES parameter identification at subsequent stages of 
DES development, it is possible to adjust the controller and 
thus realize one or another method of adaptive control  
(Nurre et al., 1984; Kabganian, and Shahravi, 2004; Dodds, 
1999; Rutkovsky et al., 2005a; Frolov et al., 2000; Silaev and 
Sukhanov, 2002), which often makes the system robust  
(Rutkovsky et al., 2005b). 
 
(C) Problem of insufficient information support of the LSS 
control system arises because of limitedness of the measure-
ment complex traditionally used to control the spacecraft in 
the case of extremely high number of the degrees of LSS 
freedom, that is, high dimensionality of the vector of control-
lable coordinates.   This contradiction provokes uncontrolla-
ble growth of some elastic components ix x∈� �  and accounts 
for system instability (Nurre et al., 1984; Rutkovsky and 
Sukhanov, 1996). Possible ways out of this situation seem to 
lie in using one or another method of estimation of the non-
measurable coordinates (Rutkovsky and Sukhanov, 1992; 
Banichuk, 1993; Kharchenkov and Shubin, 1998; Ermilova et 
al., 2004; Silaev and Sukhanov, 2002), facilities of intelligent 
diagnostics and prediction to compensate the informational 
inefficiency at control (Rutkovsky et al., 2005a; Rutkovsky et 
al., 2005b). 
 
(D) A specific problem arising at design of the control system 
of a variable space structure lies in the need for stability and 
the desired control performance at all stages of assembly, that 
is, for the entire sequence of discretely varying DES models 
(Glumov et al., 2005a), provided that at all stages the same 
actuator devices are used. Although the study of this problem 
has just started (Frolov et al., 2000; Rutkovsky et al., 2003), 
nevertheless the advisability of using computer-aided meth-
ods of on-line derivation of the motion equations of the elas-
tic object (Glumov et al., 2005) [26] with the aim of generat-
ing a sequence of DES models by means of on-board com-
puters was already established. This approach simplifies con-
trol of DES orientation at in-orbit assembly. 
 
One may assume that the aforementioned problems of con-
trolling the in-orbit assembled LSS and the outlined ap-

proaches to them can lead to realization of a complicated 
controller meeting all requirements on stable and highly pre-
cise control of elastic space structures with the parameters 
and structure varying substantially in the course of operation. 
Unfortunately, it is insufficient to solve the problem at hand 
on the whole because the desired LSS's usually cannot be 
injected into orbit in the finally assembled form (Putz, 1999; 
Buyakas, 1990; Bekey, 1999) and their assembly in the outer 
space is the only acceptable variant. At that, depending on the 
type and destination of the assembled structure, one of the 
three existing methods of assembly can be used. In particular, 
the automatic docking-based block assembly (Frolov et al., 
2000), which was successfully used for a long time for auto-
matic approach and docking of two spacecraft, is suitable for 
the in-orbit assembly of a spacecraft meant for distant mis-
sions to the planets of the solar system. Minor assembly 
works in the immediate vicinity of the manned orbiting sta-
tion can be done by the astronauts (Buyakas, 1990). Finally, 
the method of automatic assembly by the space free-flying 
robotic modules (Putz, 1999; Khang et al., 1976; Lampariello 
and Hirzinger, 2000) is advisable for step-by-step assembly 
of the large-scale grid structures meant for various purposes. 
This method of LSS assembly relieves the man of the dan-
gerous work in the open space. 
 
In this case the task of the choice of the LSS assembly se-
quence (trajectory of the assembly) is very important. 
 

4. OPTIMAL TRAJECTORY OF  
IN-ORBIT ASSEMBLY OF THE DES 

 
The problem of in-orbit assembly of DES is of current impor-
tance. However, as far as the present authors know, the prob-
lem of the optimal sequence of the in-orbit DES assembly 
was not developed either by Russian scientists or scientists 
from other countries or at the international symposia. 
 
The distinctive feature of the DES as a complex dynamic 
plant permanently subjected to control lies in the multiplicity 
of its successively changing structural states defined by the 
models nF  each of which one can assign a certain  

nF -structure with the parameters ink�  and 2
in�ω  ( 1,i n= ) de-

pending both on the characteristics of the 1nF − -th DES mod-
els and on the type of the currently attached element and the 
point of its attachment. It is quite clear that the final goal of 
these operations (creation of the desired final LSS form) can 
be reached in various ways differing in the sequence of the 
assembly the set of elements. These physically realizable 
sequences of the DES assembly were called as trajectories  
(Glumov et al., 2005a). 
 
We introduce Tr Tk ∈  ( 1, 2,...,k = ϒ ) as the k -th trajectory 
belonging to the trajectory set T. Since to each trajectory Trk  
corresponds a proper series of intermediate nF -structures 
differing in their dynamic characteristics from the identical 
structures arising along other assembly trajectories, it is ad-
visable to consider the problem of choice from the set Tr Tk ∈  
of an optimal trajectory meeting, for example, the criterion 
for minimal excitation of the elastic oscillations generated by 



 

the stabilization system of the DES angular position in the 
course of its assembly. 
 
It is possible to indicate two causes of occurrence and growth 
of the DES elastic oscillations during its in-orbit assembly. 
First, the shock disturbances which act on the elastic structure 
at the instants of attaching the elements to the existing DES 
and may be taken into account in the dynamic as the initial 
conditions at the n-th stage of assembly. Second and the 
main, in the course of stabilizing the DES angular position at 
each life stage of the nF -structure, the amplitude of elastic 
oscillations can grow under the action of the control pulses. 
 
Owing to the need for highly reliable and efficient operation 
of the control system and the use of on-board computers, the 
problem of stabilizing the spacecraft axes is traditionally 
solved in the class of discrete systems with discontinuous 
controls. For flexible-structure objects, this kind of control 
amplifies the degree of perturbing action of the controller on 
the elastic oscillations, thus substantially complicating the 
task of the DES stabilizing (Rutkovsky and Sukhanov, 1996). 
 
In Glumov et al. (2005a) it was obtained that the correlation 
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1 1

N k n
j

k i k
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= ∑ ∑σ µ          (5) 

 
can be considered as the integral characteristic (criterion) of 
the controller impact on the DES elastic oscillations. Here 

( )N k  is the total number on controller switching on the k -th 

assembly trajectory, ( ) j
i n

µ  is the maximum increment of the 
amplitude of the i-th elastic mode which is possible at the 
given j-th switching of the controller for the n-th number of 
the assembly stage. 
 
By comparing estimates (5) for different sequences of the 
models of nF -structures, one can extract the trajectory 

op t
T r σ  

such that for it the condition 
opt minkσ =  is met, which de-

fines the optimal sequence of the DES assembly. 
 
Another criterion suitable for the design of the optimal DES 
assembly trajectory is represented by the size of the MPM 
kernel (Glumov et al., 2005a) of the DES nF -structure that 
defines the least possible number of accountable modes of 
elastic oscillations of the multifrequency object.  
 
This criterion enables one to specify a sequence with the 
minimum total number of modes involved in generation of 
the models nF  which makes it possible to use simpler algo-
rithms of the DES stabilization on the set of assembly stages. 
 
One may use  (Glumov et al., 2005a) 

 
1
( )

N

k n k
n

R r
=

= ∑              (6) 

as the minimized function defining the total number of elastic 
modes in the kernels of models of all nF -structures on one or 

another DES assembly trajectory. Here ( )nr ν
 is the number 

of essential elastic modes at n-th stage of the object assembly. 
 
It is clear that the smaller kR , the lower sizes of individual 
models nF  and, consequently, the simpler control of the de-
veloping DES. Therefore, solution of the problem 

        min[ ]kR R R= →    (7) 
based on the computer-aided comparison of the set of se-
quences of the nF -structure MPM's allows one to determine 
the corresponding trajectory which is optimal 

opt
Tr R  in the 

above sense.  
 
The proposed one-criterion approaches to choosing the opti-
mal assembly trajectory by minimizing functions (5) or (6) 
can be contradictory because of the difficulty of meeting the 
consistency condition 

opt opt
Tr Tr R≡σ  for two optimal trajecto-

ries. To resolve the contradiction, one may employ the meth-
ods of vector optimization using by way of the objective 
function the expression 
 

k R k kI c R c= + σσ ,   (8) 

 

where Rc  and cσ  are the weight preference coefficients for 
the criteria (5) and (6). 
 
Analytical solution of the task about assembly optimal trajec-
tory is not obtained because of complexity of its mathemati-
cal description. So for solving this task it was suggested 
computer method. 
 
For the assembly trajectory to be perceptive by the computer 
aided design system as a suitable object, it is required to for-
malize the notion of the assembly trajectory. To define this 
notion in the computer terms, it is convenient to use matrices 
in the computer procedures.  
 
Toward this end we assign the (2×n) matrix kS  to some k -th 
assembly trajectory. According to the chosen assembly se-
quence, the first row of the matrix indicates the numbers 

1, kp p=  coinciding with those of the points number of at-
tachment of the branch base to the DES carrying body.  
 
Under the entries of the first row, the second row shows the 
numbers 1, ml l=  of the frame levels to which the attached 

elements belong. The so-constructed matrix kS  is called the 
assembly trajectory matrix.  
 
To explain the introduced matrix, we return to the framed 
structure of the hypothetical DES (Fig. 2).  
 

The notations like lp n→  at the named ( lp ) attaching ele-

ments indicate the ordinal number (n) of attaching the lp -th 
element to the already assembled part of the DES.  
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Fig. 2. Scheme of the DES assembly 

 
For example, " 21 7→ " suggests that an element of the sec-
ond level of the first "branch" of the DES frame is installed at 
its place at the seventh assembly stage. Analyses of the entire 
totality of the explanatory tables enables one to specify the 
DES assembly sequence realized in the example and set it 
down informally as 

1 1 2 1 3 1 4 1 5 1 6 12 30 1 4 2 5 3 ... 4→ → → → → → → . A formalized rep-
resentation by the matrix Sν  that corresponds to the given 
assembly trajectory is as follows: 
 

              0 1 4 2 5 3 6 1 4 2 5 2 4
0 1 1 1 1 1 1 2 2 2 2 3 3

Sν
 

=  
 

. 

 
The first column of the matrix corresponds to the stage of 
injecting to the given point the DES carrying body.  
 
The task of generating the set of DES assembly trajectories 
having the desired frame structure comes to calculating the 
set of matrices { }kS S=  ( 1,k = ϒ ), where ϒ  is the total num-
ber of feasible assembly trajectories.  
 

5. USING THE "PORTRAIT" OF THE STRUCTURE  
DYNAMICS FOR ANALYSIS AND DESIGN  

OF THE DINAMIC CHARACTERISTICS OF DES  
AS THE OBJECT OF CONTROL 

 
For design of the control systems of complex objects, an im-
portant part is played by the choice of constructive parame-
ters of the controlled object with regard for the possibility of 
subsequent use of the simplest control algorithms (Kulebakin, 
1955). As applied to the objects like DES's, this idea of V.S. 
Kulebakin can be rather easily realized by the method of con-
structing on the basis of the modal-physical model (2) the 
portrait of the object structure dynamics (Rutkovsky et al., 
1996) which reflects numerous characteristics of the elastic 
object dynamics and allows one to make well-grounded deci-
sions for the orientation control system design. The "portrait" 
also enables one to optimize the parameters of all , 1,nF n N= , 

structures with the aim of improving its dynamic characteris-
tics already at the early stage of spacecraft design. For the 
methods of solving this problem, determination of the opti-
mality criteria, and some results of using the proposed ap-
proach the reader is referred to (Rutkovsky and Sukhanov, 
1997; Rutkovsky et al., 1997). 
 
As was shown in Rutkovsky et al. (1996), being certain func-
tions of the object physical parameters ( , )c vΛ = λ λ  part of 
which ( cλ ) is regarded as constant and the other part ( vλ ) 
can be varied to a certain extent, the coefficients of the DES 
Lagrangian equations allow one to determine the depend-
ences of the coefficients of MPM (2) on the parameters vλ : 

( ), ( )in in v in in vk kω = ω λ = λ� �� � . Together with the vector µ 

which depends on the coefficients inω�  and ink�  and has ele-
ments that are essentially the unit degrees of excitability [32] 

2
in in ink −µ = ω� , the totality of these characteristics defining the 

dynamics of the structure of an elastic object was called in 
Rutkovsky et al. (1996) as the "portrait" of DES structure 
dynamics: 

              
( ), ( ), ( ), 1, ; 1, .in in v in in v in in vk k i n n Nω =ω λ = λ µ =µ λ = =� �� �   (9)  

                       
Now, the problem of studying the dynamics of the DES 
structure can be formulated as that of analysis of behavior of 
the coefficients (9) of MPM (2) in the space of permissible 
variations of the parameters vλ . The "portrait" of structure 
dynamics constructed by computer-aided methods plays an 
important role in improving the characteristics of DES as the 
controlled object. In particular, analysis of the "portrait" can 
reveal latent useful features of the elastic multi-frequency 
object that can be realized by permissible variations of the 
parameter vλ . 
 
For example, the zeros of the functions ( ) 0in vk λ =�  indicate 
on the important fact that at these points of the structure pa-
rameter space the external forces exert no disturbing action 
on the corresponding elastic modes. Analysis of the mutual 
position of the graphs of the functions ( )in vµ λ  allows one to 
identify the domains where the higher modes are more excit-
able than the lower ones. Existence of such modes prevents 
model reduction just by simple rejection of some higher 
modes. At analysis of "portrait" (9), these domains are identi-
fied by the intersection points of the graphs ( ) ( )jn v kn vµ λ =µ λ . 
Assuming that the contribution of the i-th mode to the total 
component of the elastic motion ( )x t�  is defined by the excit-
ability degree iµ  of this mode, then the elastic modes can be 
ranked in terms of the index iµ . Indeed, any mode ( )inx t�  
whose excitability degree satisfies some established small-
ness condition ( 1

in dn n
−

µµ µ ≤ ε ) as compared with the domi-

nant mode dnx�  having maxdnµ =  can be regarded as ines-
sential for DES dynamics. This enables substantiated reduc-
tion of the elastic object model and identification of the MPM 
kernel comprising the equation of the "rigid" DES motion 
and a finite set of equations of the elastic modes remaining 



 

after elimination of the inessential group of modes that are 
regarded as the residue of the MPM. 
 
In the general case, decomposition, of the original high-order 
model into a simplified (suitable for designing the control 
system) and full (for test checks) models is an exceptionally 
important task for the objects like DES's. A vast literature 
devoted to it was analyzed in Nurre et al. (1984). Determina-
tion of the decomposition criterion presents a special diffi-
culty. In this sense, the method of analysis of the "portrait" of 
structure dynamics (Rutkovsky et al., 1996) offers one of the 
possible criteria for reduction of the DES model. 
 

6. ADAPTIVE ATTITUDE CONTROL OF THE DES 
 
As mentioned above the DES has three periods (or phases) of 
its existence. The simplest period for the control is the first 
one when the DES is the rigid carrying body. There are many 
papers and books in which the problem of control of rigid 
spacecrafts is considered. At the present time two qualita-
tively different groups of the control algorithms are well 
known. 
 
The first one is the relay control law 0 ( , )u x t  (base algorithm) 
with hysteresis and dead zone. There are many types of such 
algorithms (Raushenbakh, and Tokar, 1974). One of them is 
relay-logical algorithm (Rutkovsky and Sukhanov 2007): 
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0 1 1 1 0 1
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1 2 2 1 2 1
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m x t t t t t k k
m x t t
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
− ∀ ≥ ε∨ ∈ ϕ = ε− γ − = τ= + ∀ ≤ ε− γ ∨ ∈ − = τ = τ <
+ ∀ < ε− γ ∨ ≥

(10) 

Here mu  and mε  are two levels of relay control action. 
 
Their values are chosen according to the requirements to the 
control system; ε , γ  are the dead zone and hysteresis of the 
relay link; k t  is the coefficient of reversing.  
 
It defines the time interval of reverse control action that is 
applied to the carrying body after the completion of the 
“right” control action. Stable limit cycle that is realized by 
base algorithm (10) is shown in Fig. 3, where aΓ ετ = τ + τ  is 
the limit cycle period, 1 2aτ = τ + τ , 1 2, , ετ τ τ  are the time inter-
vals, when ( )m u  is equal , ,u um m mε−  respectively.  This 
cycle should be in compliance with the requirements to the 
accuracy (

maxx x≤ ) and economics ( *a Γχ = τ τ ≤ χ ) of the 
control, maxx  and *χ  are desired indexes of the control qual-
ity. This limit cycle Γ is chosen as a reference motion. Other 
attitude motions throughout the lifetime of the DES are to 
tend to this one and elastic oscillation component x�  must be 
small. The discrete analogies of the PD algorithms form the 
second group of the carrying body control algorithms: 

 

0 0 1 2ˆ ˆ( ) [ ( ) ( )], 0,1, 2,...k k ku t k k x t k x t k= − + ∆ =     (11) 
 

In (11) 0 1 2, ,k k k  are constant coefficients of the first period of 
the DES existence. Coordinate ˆ( )kx t  is the estimation of the 
measured one ( )kx t . For calculation of this estimation it is 
used s values of the coordinate ( ), 1,k kx t t s= , during the 
discreteness period 0T  of the control action. The value ˆ( )kx t∆  
is calculated as the first difference of the coordinate ˆ( )kx t . 
As the system is discrete the control action )(um  is 
discontinuous and it is constant during the discreteness period 

0T . It is necessary to stress that in both cases as the stationary 
process is auto-oscillations. 
 
After attaching of the first element and the following ones to 
the carrying body the DES transforms into flexible structure 
or flexible spacecraft. In this case control actions that corre-
spond to any control algorithm including (10) and (11) lead 
to appearance of the object elastic oscillations. These oscilla-
tions deform limit cycle Γ and decrease the orientation accu-
racy. Without control strategy change the oscillations can 
lead to instability of the system motion.  
 
Other control problem is the increase of the inertia moment in 
the course of the object assembly. This fact at constant level 
of the control actions leads to the control effectiveness de-
crease and of the dynamic error increase. And at last the main 
problem in the DES control system design is the increase of 
the model (2) order in the process of the object assembly. 
This is followed by step-like variations of the model (2) coef-
ficients and decrease of the lower boundary of the elastic 
oscillations frequencies spectrum. And it should be particu-
larly emphasized that the parameters of all elastic modes 
(frequencies and coefficients of excitability) are changed at 
each new stage of the object assembly. 
 
An inaccuracy of the assignment in advance of the object 
construction parameters and the values of the elastic modes 
parameters together with aforementioned problems require to 
have the control strategy as an using adaptive one. 
 
Because of this for the second and the third periods of the 
DES life-time it was suggested three types of the adaptive 
control strategies, namely, tuning of the base algorithm:  
1) using intelligent diagnostics of the elastic modes condition 
(Rutkovsky and Sukhanov 2007; Glumov et al., 2007 ),  
2) using the idea of phase control (Rutkovsky et al., 2007; 
Rutkovsky and Sukhanov, 1973), 
3) idea of fuzzy logic (Glumov et al., 2004).  
 

Fig. 3. Stable limit cycle of the DES for       
condition of the rigid body 
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The use of one or other strategy depends on the concrete con-
struction of the object, its dimensions, dimensions of the at-

tached elements, their parameters and so on.  

Let us consider the first strategy. Intensity of the elastic oscil-
lations that is defined essentially by the dominant mode dx�  
(other modes are usually much less then dx� ) can be as a sig-
nal of the control system functioning quality. This signal is 
used for the diagnostics of the system and for tuning of the 
base algorithm 0( , , )u x x r�  parameter r. The influence of the 

base algorithm on the character of the component motion x�  
can be evaluated by quasi-envelope ( , ) Env[ ( ( , ), )]t r x u r tρ = � i  of 
the transient process ( ) ( ) ( )d i i d

x t x t x t
≠

= + ∑� � �  (Glumov et al., 
2007). This envelope after two-stage approximation can be 
represented by the exponential curve ( )( , ( )) d

d d
r tt r aeνρ ν ≈ . 

The value ( )d rν  defines the rate of the component dx�  am-
plitude varying. The sign ( )d rν  defines the type of the domi-
nant mode dx�  (convergent, divergent, with constant ampli-
tude). Thus for any fixed value min max[ , ]r r r∗ ∈  where 

min max[ , ]r r  is the range of the parameter r admissible values 
the regulator influence on the component ( )x t�  can be defined 
by the single number ( )rν ν∗ ∗= . Varying parameter r and 
calculating the index ( )rν  it is possible to get “influence 

function” ( )d d r=ν ν . Each such function for d = i, 1,i n= , 
has many local extreme and global minimum, see Fig. 4.  
 

1( )rν  

2( )rν  

3( )rν  

( )d rν  

 r≡T0

 
Fig. 4. Functions of basic control on elastic oscillations 

 Totality of the influence functions { ( )}d d rνϒ = , ( 1,d i n∈ = ) is 
used for diagnostics of the component ( )x t�  current condition 
and for following base algorithm adaptive correction with the 
goal of the component ( )x t�  amplitude decreasing (if it is 
close with the critical value). In order to have high effective 
control of the DES at every stage of the assembly it is neces-
sary to solve on-line three tasks (if ( ) 0rν > ): 1) to determine 
the number d of the dominant mode using the identified fre-
quency , 1,d d i nω ∈ = ; 2) using the number d it is required to 
determine new value 1 1min 1max[ , ]r r r∈  under which 1( ) 0rν < ;   

3) usually designed influence functions ( )d rν  do not coincide 
with actual functions ˆ ( )d rν .  
Therefore it is required to seek additionally a point  

2 1min 1max[ , ]r r r∈ , where 2ˆ ( )d rν =min min, which provides max-
imal speed of the dominant mode dx�  damping. 
 
A solution of these tasks [35] realizes the procedure of the 
base algorithm tuning. It is significant that damping of the 
dominant mode is achieved without an additional consump-
tion of the energy for control. Block scheme of the control 
system is shown in Fig. 5. It has the base loop and the loops 
of the elastic component x�  diagnostics and tuning rough and 
precise of the base algorithm parameter r. Here the coeffi-
cient ( )mK n  is varied according to the information about the 

moment of inertia nI . It solves the task to have constant 
value of the control effectiveness at all stages of the assem-
bly. 
 
Information module of the subsystem of the base algorithm 
rough tuning using the set mZ  produces the signal ( )rν  on 

the basis of the method of quasi-envelope ( )( ) r tt ae≈ νρ  cal-
culation. The device of the dominant mode frequency identi-
fication uses the set mZ  also. The set mZ  consists of the 
maximal values [ ]mz l  that are the amplitudes at k l=  of the 
rectified signal [ ]az k . In addition to the set mZ  the one 

{ [ ]}mmT t l=  is used in the last device. In the regime of domi-
nant mode the differences [ ] { [ ] [ 1]} 0,5m m m jdt j t l t l τ∆ = − − ≈ �  be-
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tween two adjacent elements of the set mT  that have maximal 
amplitudes coincide with the half-period 0,5 j dτ�  of the oscil-
lating component. After average operation: 

1
1

1
2( 1) [ ]

L

d m
j

L t jτ
−

−

=

= − ∆∑� , ( dim mL T= ) with the help of formula 

12d dω πτ −= �  the frequency of the dominant mode can be calcu-
lated. For identification of the dominant mode number d the 
differences 

( 1, )di i i n
ω ω ω

=
∆ = −  are considered. It is accepted 

d i=  from the condition mini i d i
ω ω ω∆ = − = . 

 
The information module outputs ν , d  and average value 
 mz  of the set mZ  elements are the inputs of the subsystem of 

the parameter r rough tuning. The value *
mz  is the admissible 

level of the vibrating process intensity. 
For the parameter r tuning it is required to take from the to-
tality { }( )d d rνΛ =  the influence function ( )d rν  correspond-
ing to the determined number d and employ it to the supply 
the varied parameter r with a new value r1 for which 

1( ) min 0d rν = < . This allows to reduce the amplitude of the 
dominant mode at the subsequent intervals of active control 
(m(u) ≠ 0). 
 
To eliminate the inaccuracy of the parameter r rough tuning 
the contour of precise tuning is introduced into the system. 
The aim of this contour lies in determining a value 2 optr r�  
such that it ensures 2ˆ ( ) min min 0d rν = < . In this case we will 
have the maximum possible speed of damping the dominant 
mode. The process of precise tuning can be realized by search 
algorithms in the class of extremal control [38]. 
By the action of the new control 2[ ( , )]m u r•  dominant mode 
is damped by optimal way. But if one of the other elastic 
modes begins to diverge then from the certain moment it will 
be as the dominant one and the process of the parameter r 
tuning must be repeated. Hence if it is not possible to choose 
the constant values of the base algorithm parameters which 
guarantee convergence of all elastic modes the process of the 
algorithm tuning will be recurred during the whole active 
lifetime of the DES. The adaptive control system of a LSS 
was reproduced in the MATLAB 6.5-Simulink system. The 
LSS obeying the model (2) at n = 6 with discrete analog of 
the PD algorithm (15) was considered as the controlled ob-
ject. The discreteness period 0T r�  was used as the tuning 
parameter. For the considered object it was not possible to 
choose the value 0T  in its admissible range ( min 0 maxT T T≤ ≤ ) 
at which all six elastic modes would be stable. One from 
three first modes (d = 1, 2, 3) diverges at any value of 

min 0 maxT T T≤ ≤  but others (d = 4, 5, 6) converge. On simula-
tion the parameters of the elastic modes were set up with er-
rors (20 % with respect to their nominal values). The period 
of the limit cycle was ≈150 s, 00 0 0( ) 1, 0T T t s= = . Some re-
sults of simulation are shown in Fig. 6. 
 
2. As the strategy of the DES control can be used also the one 
that was suggested in [37, 39]. In this type of control it is 

used the estimations of the dominant mode phases β  in the 
instants jt  of the control action switching. 
 

Fig. 6. Stabilization dynamics as estimated from the output of the
           information unit. 
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The time-delay βτ  for control action switching is introduced 

until the instant *
j jt t βτ= +  when the aforementioned phase 

will be as optimal. This time-delay can be introduced only in 
a part of switching points of the limit cycle. 
 
Optimal phase jβ  is the phase at which the dominant mode's 
amplitude after the switching will be the smallest from all 
possible ones. It depends on the direction of the control ac-
tion switching. The optimal phase  is defined as follows [39]: 

     2   sign 1,

(2 1)  sign 1, 0,1,2,...
j

j
j

k m

k m k

π
β

π

∀ = +=  + ∀ = − =

�

�
           (12)

For example the minimum value of the time-delay βτ  in the 
switching point that is characterized by the condition 

0( )x t ε= , 0sign ( ) 1m t = −�  (ε  is the dead zone) will be as 
follows: 

1
0 0

1
0 0

[ ( )] 0 ,

[3 ( )] 2 ,
d d d

d d d

t

tβ

π β ω β π
τ

π β ω π β π

−

−

 − ∀ ≤ ≤= 
− ∀ < ≤

�
�

         (13) 

 
where 0 0( )d d tβ β=  is the dominant mode phase at the instant 
when 0( )x t ε= . 

 
In [39] it was shown that for the system movement stability  
optimal phase of switching must be at least at the one-half of  
the switching points that occur at each period of the limit 
cycle. Block scheme of such type control system is shown in 
Fig. 7. The main loop of the control system is depicted by a 
dot line. This loop includes an additional link with two tuning 
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parameters ,mK τ . The first parameter mK  is the tuning ampli-
fication coefficient that is needed for the maintenance of the 
constant level of the control action 1

u u m nm M K I −=  of the as-
sembled object with the variable mass-inertia properties. 
The second tuning coefficient τ  implements the control by 
the time-delay of the control action, which switches with re-
spect to the base algorithm requirements. The estimation of 
current phase of the dominant mode is obtained with the help 
of Kalman filter [22]. 
 
The example of computer simulation of the suggested system 
for the 6-th stage of the object assembly is shown in Fig. 8. 
As the object corresponding to equations (2) at 6n =  it was 
chosen the large space structure with the inertia moment 

4 210nI kg m= ⋅ . Other parameters are given in the table. 
 

Table 1. Some parameters of the LSS 

  
As the dominant mode at the initial moment of control was 

1x� . This mode is subjected to the control action influence the 
most strongly because of its degree of excitability 

(1) 2
1 1 1 0,88kµ ω−= =� �  is the most high.  

 
At the initial interval of the simulation ( 1 220t t c≤ = ) the 
loop of time-delay of the control action switching was not 
operated. In this case the control action 0( )m u  causes the 
increase of the elastic mode amplitude to the value 

31,2 10dA rad−≈ ⋅�  that is close to the critical one. 
 
In order to prevent the capture of the regulator by elastic os-
cillations and instability of the system movement at t1 = 220c 
the algorithm with time-delay for control action switching 
u(•, β) was applied. The intervals of the time-delay are 
shaded (see oscillogram 2). As the result the dominant mode 
amplitude was decreased very quickly.  
 
3. The third strategy is based on the idea of fuzzy logic [40]. 
 
In [17] the DES adaptive control system with control law 
(15) and the tuning parameter 0r T�  was considered again. 
It was introduced for each stage of the DES assembly n, 

1,n N= , state diagram where the horizontal axis of the base 
algorithm tuning parameter r is decomposed into the domains 

0, , , 1,in in inL L L i n− + = , corresponding to stable ( inx−� ), unstable ( inx+� ) 

and neutral ( 0
inx� ) behavior of the isolated ( ( ) 0atjnx t j i= ≠� ) 

mode ( )inx t� . The mode ( )inx t�  is characterized by the pa-

rameter inω�  indicated on the vertical axis of the diagram. At 
this ( )in inx t x−∈� � , provided that its envelope ( , )in r tρ  is a de-

creasing function, ( )in inx t x +∈� �  provided that ( , )in r tρ  is an 
increasing function. And finally, 0( )in inx t x∈� �  provided that 

( , )in r tρ  is a weakly time-varying function. 

Fig. 8. Processes in a regime of stabilization 
 
State diagrams for isolated modes differ from the real dia-
grams because of we do not know the object's parameters 
with the high accuracy and we can not take into account all 
elastic modes. As a result it is not possible to use directly 
aforementioned state diagrams for tuning parameter 0r T�  
and it is appropriate to use these diagrams in combination 
with the results of the fuzzy logic theory. 
 
According to [17], for given initial values of T0 = T00, the 
discrete system of control by the parameter T0 is represent 
able by a fuzzy model with input ∆T and outputs ( )nk tν  and 

( )nky t , where ( )nk tν  and ( )nky t  define the envelope of the 
process ( )nx t�  and the local speed of its variation in time. It 
was introduce the linguistic variables ∆T, V, Y, and TO that 
correspond to the aforementioned variables and are defined 
by the intervals where the particular values of the initial vari-
ables lie. It is further assumed that the linguistic variables ∆T, 
V. Y, and TO can have values defined by the term-set like QW 
= {NB, NM, NS, ZE, PS, PM, PB}, where N stands for the 
negative values, P for positive values, B, M, and S stand for 
large, medium, and small values, respectively, ZE defines the 
zero value, and W is a linguistic variable which can be any of 
the variables T, V, Y, or TO. 
 
Now the fuzzy model of the adaptation algorithm can be rep-
resented by the following fuzzy functions [40]: 
 

0: , : ,R V T A T nk AF Q Q R F R Tν∆× → × →  
 

where the function FR defines the dependence of the elements 
of the set of fuzzy rules of the adaptation algorithm RA on the 
linguistic variables VV Q∈  and TT Q∆∆ ∈ , the function FT de-
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termines the neat output coordinate of the algorithm of adap-
tation of T0 using the neat value of the output variable of the 
system nkν  and the corresponding fuzzy rules from the set 
RA. 
 
The task of designing the adaptation algorithm lies in deter-
mining the fuzzy functions that must correspond to character-
istics of the T0 tuning loop defined in the general case by the 
fuzzy functions 

 
: , : .y TO Y TO Vf Q Q f Q Qν→ →  

 
For the system under study, the fuzzy function fy corresponds 
to a sequence of smoothed envelopes of the processes of 
variation of the flexible component ( ), 1,ny t n N=� , containing 
the flexible modes ( ), 1,inx t i n=� . The fuzzy function fν corre-
sponds to the set of characteristics 0( )in Tν  for all modes. 
 
To solve the problem of designing the algorithm of adapta-
tion of T0, one needs to determine a set of rules RA realizing 
the desired functions, provided that the processes 

( ), 1,ny t n N=� , damp so fast that at the end of each assembly 
stage Y ∈ PS. The condition ( , )V NM NB∈  should be satis-
fied at that. 
 
In [17] it was obtained fuzzy rules for the procedure of the 
parameter T0 tuning. 
 
Operation of the fuzzy adaptation algorithm was studied by 
digital simulation using the model (2) of the DES for N = 8 
with the base control algorithm (15) and the adaptation algo-
rithm RA (see [17]). Digital simulation corroborated the high 
effectiveness of suggested control system. 
 

9. CONCLUSIONS 
 
The large space structures assembling in orbit are the objects 
of the immediate future. At the present time the control the-
ory of such kind objects is poorly developed. In this paper 
some new problems of this theory are formulated and certain 
of them are discussed. They are graph-models of feasible 
assembly trajectory and object's dynamics, optimal assembly 
trajectory. Three strategies of adaptive control were sug-
gested. But of course these results are only the first steps or 
infancy in the control theory by large space structures. 
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