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Abstract
This paper deals with the state estimation problem

for uncertain dynamical control systems with a special
structure, in which the nonlinear terms in the right-hand
sides of related differential equations are quadratic in
state coordinates. We do not impose the condition of
positive definiteness of the quadratic nonlinearity in the
system. The external ellipsoidal estimates of reachable
sets of the system are constructed assuming that initial
system states are unknown but bounded.
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1 Introduction
In this paper we study control systems with unknown

but bounded uncertainties related to the case of a
set-membership description of uncertainty [Schweppe,
1973; Krasovskii and Subbotin, 1974; Bertsekas, 1995;
Kurzhanski and Valyi, 1997; Kurzhanski and Varaiya,
2014; Chernousko, 1994; Walter and Pronzato, 1997;
Milanese and Vicino, 1991; Milanese, Norton, Piet-
Lahanier and Walter, 1996; Witsenhausen, 1968; Gu-
sev, 2012]. The motivation to consider the set-
membership approach is that in traditional formula-
tions the characterization of parameter uncertainties re-
quires assumptions on mean, variances or probability
density function of errors. However in many applied
areas ranged from engineering problems in physics to
economics as well as to biological and ecological mod-
eling it occurs that a stochastic nature of the error se-
quence is questionable [Apreutesei, 2009; August and
Koeppl, 2012; August, Lu and Koeppl, 2012; Cec-
carelli, Di Marco, Garulli, and Giannitrapani, 2004;
Kuntsevich and Volosov, 2015]. For instance, in case of
limited data or after some non-linear transformation of
the data, the presumed stochastic characterization is not
always valid. Hence, as an alternative to a stochastic

characterization a so-called bounded-error characteri-
zation, also called set-membership approach, has been
proposed and intensively developed in the last decades.
The solution of many control and estimation prob-

lems under uncertainty involves constructing reachable
sets and their analogs. For models with linear dy-
namics under such set-membership uncertainty there
are several constructive approaches which allow find-
ing effective estimates of reachable sets. We note here
two of the most developed approaches to research in
this area. The first one is based on ellipsoidal calcu-
lus [Chernousko, 1994; Kurzhanski and Valyi, 1997;
Polyak, Nazin, Durieu and Walter, 2004; Ovseevich
and Taraban’ko, 2007] and the second one uses the in-
terval analysis [Walter and Pronzato, 1997].
Many applied problems are mostly nonlinear in their

parameters and the set of feasible system states is usu-
ally non-convex or even non-connected. The key issue
in nonlinear set-membership estimation is to find suit-
able techniques, which produce related bounds for the
set of unknown system states without being too compu-
tationally demanding. Some approaches to the nonlin-
ear set-membership estimation problems and discrete
approximation techniques for differential inclusions
through a set-valued analogy of well-known Euler’s
method were developed in [Chahma, 2003; Dontchev
and Lempio, 1992; Baier, Gerdts and Xausa, 2013;
Häckl, 1996; Mazurenko, 2012].
In this paper the modified state estimation approaches

which use the special quadratic structure of nonlin-
earity of studied control system and use also the ad-
vantages of ellipsoidal calculus [Kurzhanski and Valyi,
1997; Chernousko, 1994] are presented. The special
case when the quadratic form in the equations of dy-
namics of the controlled system may be not positive
definite is studied. The studies in this direction are mo-
tivated also by applications [Kuntsevich and Volosov,
2015; Volosov and Kuntsevich, 2012].
Examples and numerical results related to procedures

of set-valued approximations of trajectory tubes and



reachable sets are also presented. The applications of
the problems studied in this paper are in guaranteed
state estimation for nonlinear systems with unknown
but bounded errors and in nonlinear control theory.

2 Problem Formulation
In this section we introduce the following basic nota-

tions. Let Rn be the n–dimensional Euclidean space,
Rn×n stands for the set of all n × n–matrices and x′y
be the usual inner product of x, y ∈ Rn with prime as
a transpose, ‖x‖ = (x′x)1/2. We denote as B(a, r) the
ball in Rn, B(a, r) = {x ∈ Rn : ‖x−a‖ ≤ r}, I is the
identity n×n-matrix. Denote by E(a,Q) the ellipsoid
in Rn, E(a,Q) = {x ∈ Rn : (Q−1(x−a), (x−a)) ≤
1} with center a ∈ Rn and symmetric positive definite
n × n–matrix Q, for any n × n–matrix M = {mij}
denote

Tr(M) =

i=n∑

i=1

mii.

Consider the following system

ẋ = A(t)x+ f(x)d+ u(t),

x0 ∈ X0, t0 ≤ t ≤ T,
(1)

where x, d ∈ Rn, ‖x‖ ≤ K (K > 0), the n × n–
matrix A(t) is assumed to be continuous on t ∈ [t0, T ]
and f(x) = x′Bx is scalar function, with a symmetric
n× n–matrix B,

u(t) ∈ U, U ⊂ Rm for a.e. t ∈ [t0, T ]. (2)

We will assume that X0 in (1) is an ellipsoid, X0 =
E(a,Q), with a symmetric and positive definite matrix
Q and with a center a. Let the absolutely continuous
function x(t) = x(t, u(·), t0, x0) be a solution to (1).
We will study the solutions of the system (1)–(2) in the

framework of the theory of uncertain dynamical sys-
tems (differential inclusions [Aubin and Frankowska,
1990; Filippov, 1988; Panasyuk, 1990]) through the
techniques of trajectory tubes [Kurzhanski and Filip-
pova, 1993; Kurzhanski and Varaiya, 2014]:

X(·) = X(·; t0, X0) =
⋃ { x(·) =

x(·, u(·), t0, x0) | x0 ∈ X0, u(·) ∈ U }.
(3)

The reachable set X(t) of the system (1) at time t
(t0 < t ≤ T ) is defined as the cross-section of the
trajectory tube (3)

X(t) = X(t; t0, X0) =

{ x ∈ Rn : ∃ x0 ∈ X0, ∃ u(·) ∈ U such that

x = x(t) = x(t; u(·), x0) }, t0 < t ≤ T.

The main problem of the paper is to find the ex-
ternal ellipsoidal estimate E(a+(t), Q+(t)) (with re-
spect to the inclusion of sets) of the reachable set X(t)
(t0 < t ≤ T ) by using the analysis of a special type of
nonlinear control systems with uncertain initial data.

3 Preliminaries
We will need some auxiliary constructions and results

which will be used in the following.

3.1 Nonlinearity defined by a positive definite
quadratic form

Consider the nonlinear control system

ẋ = A(t)x+ f(x)d+ u(t),

x0 ∈ X0 = E(a0, Q0), t0 ≤ t ≤ T,
(4)

where x ∈ Rn, ‖x‖ ≤ K (K > 0), A(t) ∈ Rn×n is a
given continuous matrix, u(t) ∈ U = E(â, Q̂); d, a0,
â are given n-vectors, a scalar function f(x) has a form
f(x) = x′Bx, matrices B, Q0, Q̂ are symmetric and
positive definite.
Denote the maximal eigenvalue of the matrix
B1/2Q0B

1/2 by k2, it is easy to see this k2 is
the smallest number for which the inclusion X0 ⊆
E(a0, k

2B−1) is true. The following result describes
the external ellipsoidal estimate of the reachable set
X(t) = X(t; t0, X0) (t0 ≤ t ≤ T ).

Theorem 1 ([Filippova, 2009]). Assume that X0 =
E(a, k2(B−1)) (with some k > 0), then for all σ > 0
and for X(t0 + σ) ⊆ X(t0 + σ, t0, X0) we have the
following upper estimate

X(t0 + σ) ⊆ E(a+(σ), Q+(σ)) + o(σ)B(0, 1), (5)

where σ−1o(σ) → 0 when σ → +0 and

a+(σ) = a(σ) + σâ,

a(σ) = a+ σ(A0a+ a′Bad+ k2d),

Q+(σ) = (p−1 + 1)Q(σ) + (p+ 1)σ2Q̂,

Q(σ) = k22(I + σR)B−1(I + σR)′,

R = A+ 2da′B.

(6)

and where p is the unique positive root of the equation

n∑

i=1

1

p+ αi
=

n

p(p+ 1)

with αi ≥ 0 (i = 1, ..., n) being the roots of the follow-
ing equations |Q(σ)− ασ2Q̂| = 0.



The following result presents the continuous-type ver-
sion of the Theorem 1.

Theorem 2 ([Filippova, 2010]). The inclusion is true
for any t ∈ [t0, T ]

X(t; t0, X0) ⊆ E(a+(t), r+(t)B−1), (7)

where functions a+(t), r+(t) are the solutions of the
following system of ordinary differential equations

ȧ+(t) = A0a
+(t) + ((a+(t))′Ba+(t)+

r+(t))d+ â, t0 ≤ t ≤ T,

ṙ+(t) = max
‖l‖=1

{
l′
(
2r+(t)B1/2(A0 +

2d(a+(t))′B)B−1/2 +

q−1(r+(t))B1/2Q̂B1/2)
)
l
}
+ q(r+(t))r+(t),

q(r) = ((nr)−1Tr(BQ̂))1/2,

(8)

with initial state

a+(t0) = a0, r+(t0) = k2.

Numerical algorithms basing on Theorem 1 and The-
orem 2 and producing the external ellipsoidal tube
E+(t) = E(a(t), Q(t)) are given in [Filippova, 2012;
Filippova and Matviychuk, 2014].
The following example shows that in nonlinear case

the reachable sets may lose their convexity with in-
creasing time t > t0. Nevertheless the related external
estimates given by Theorems 1–2 are ellipsoidal-valued
(and therefore convex) and contain the reachable sets of
the system (4).
Example 1. Consider the following control system

{
ẋ1 = 2x1 + u1,
ẋ2 = 2x2 + 4x2

1 + x2
2 + u2,

x0 ∈ X0, t0 ≤ t ≤ T.

(9)

Here t0 = 0, T = 0.25, X0 = B(0, 1) and U =
B(0, 1). The trajectory tube X(t) and its external el-
lipsoidal estimating tube E(a(t), Q(t)) are shown in
Fig. 1.

3.2 Systems with two positive definite quadratic
forms

Consider the following uncertain differential system
with two positive definite quadratic forms in the dy-
namical equation

ẋ = Ax+ f (1)(x)d(1) + f (2)(x)d(2),

x0 ∈ X0, t0 ≤ t ≤ T,
(10)
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Figure 1. Trajectory tube X(t) and its estimating tube
E(a(t), Q(t)).

where d(1) and d(2) are n-vectors and f (1), f (2) are
scalar functions,

f (1)(x) = x′B(1)x, f (2)(x) = x′B(2)x,

with symmetric and positive definite matrices
B(1), B(2). We assume also that d

(1)
i = 0 for

i = k + 1, . . . , n and d
(2)
j = 0 for j = 1, . . . , k where

k (1 ≤ k ≤ n) is fixed. This assumption means that
the first k equations of the system (10) contain only
the nonlinear function f (1)(x) (with some constant
coefficients d(1)i ) while f (2)(x) is included only in the
equations with numbers k + 1, . . . , n.
We will assume as before that X0 in (10) is an el-

lipsoid, X0 = E(a0, Q0). We need here some aux-
iliary results where necessary constructions and addi-
tional parameters will be defined.

Lemma 1 ([Filippova and Matviychuk, 2014]). The
following inclusion is true

X0 ⊆ E(a, k21(B
(1))−1)

⋂
E(a, k22(B

(2))−1) (11)

where k2i is the maximal eigenvalue of the matrix
(B(i))1/2Q(B(i))1/2 (i = 1, 2). The following equali-
ties are true

max
z′B(1)z≤k2

1

z′B(2)z = k21λ
2
12,

max
z′B(2)z≤k2

2

z′B(1)z = k22λ
2
21,

(12)

where λ2
12 and λ2

21 are maximal eigenval-
ues of matrices (B(1))−1/2B(2)(B(1))−1/2 and
(B(2))−1/2B(1)(B(2))−1/2 respectively.

Theorem 3 ([Filippova and Matviychuk, 2014]).
For all σ > 0 and for X(t0 + σ) = X(t0 + σ, t0, X0)



we have the following upper estimate

X(t0 + σ) ⊆
E(a(1)(σ), Q(1)(σ))

⋂
E(a(2)(σ), Q(2)(σ))

+ o(σ)B(0, 1),

(13)

where σ−1o(σ) → 0 when σ → +0 and

a(1)(σ) = a(σ) + σk21λ
2
12d

(2),

a(2)(σ) = a(σ) + σk22λ
2
21d

(1),

a(σ) = (I + σA)a+

σa′B(1)ad(1) + σa′B(2)ad(2),

Q(1)(σ) = (p−1
1 + 1)(I + σR)k21(B

(1))−1(I + σR)′

+(p1 + 1)σ2||d(2)||2k41λ4
12 · I,

Q(2)(σ) = (p−1
2 + 1)(I + σR)k22(B

(2))−1(I + σR)′+

(p2 + 1)σ2||d(1)||2k42λ4
21 · I,

R = A+ 2d(1)a′B(1) + 2d(2)a′B(2)

(14)
and p1, p2 are the unique positive solutions of related
algebraic equations

n∑
i=1

1
p1+αi

= n
p1(p1+1) ,

n∑
i=1

1
p2+βi

= n
p2(p2+1)

(15)

with αi, βi ≥ 0 (i = 1, ..., n) being the roots of the
following equations

det((I + σR)k21(B
(1))−1(I + σR)′−

ασ2||d(2)||2k41λ4
12 · I) = 0,

det((I + σR)k22(B
(2))−1(I + σR)′−

βσ2||d(1)||2k42λ4
21 · I) = 0.

(16)

4 Main results
Consider the general case

ẋ = A(t)x+ x′Bx · d+ u(t), t0 ≤ t ≤ T,

x0 ∈ X0 = E(a0, Q0), u(t) ∈ U = E(â, Q̂).
(17)

We assume here that matrices B, Q̂ and Q0 are sym-
metric, Q̂ and Q0 are positive definite. This assumption
produces more general case than in [Filippova, 2012]
because we do not assume here the positive definiteness
of the matrix B in the nonlinear term of the right-hand
side of dynamic equations (17). This new setting gener-
alizes previous results and is motivated also by applied
problems (e.g., [Kuntsevich and Volosov, 2015]).
Using well-known diagonalization procedures of ma-

trix analysis [Bellman, 1997] we can find the non-
degenerate n × n–matrix Z of transformation z = Zx

(x, z ∈ Rn) of the state space Rn under which the sys-
tem (17) will take the form

ż = A∗(t)z + z′B∗z · d∗ + w(t), t0 ≤ t ≤ T,

z0 ∈ Z0 = E(a∗0, Q
∗
0),

w(t) ∈ W = E(â∗, Q̂∗),

(18)

where B∗ = diag{b∗1, . . . b∗n} with b∗i (i = 1, . . . , n)
being the eigenvalues of the matrix B∗. We may as-
sume without loss of generality that b∗i = α2

i (i =
1, . . . , s) and b∗i = −β2

i (i = i+ 1, . . . , n).
Denote

f (1)(z) =
s∑

i=1

α2
i z

2
i , f (2)(z) =

n∑
i=s+1

β2
i z

2
i ,

d(1) = d∗, d(2) = −d∗,
(19)

and rewrite the system (18) as

ż = A∗(t)z + f (1)(z) · d(1) + f (2)(z) · d(2) + w(t),

z0 ∈ Z0 = E(a∗0, Q
∗
0), t0 ≤ t ≤ T,

w(t) ∈ W = E(â∗, Q̂∗).
(20)

We see here that the quadratic functions f (1)(z) and
f (2)(z) in (20) are of the same form as in (10) ex-
cept the property of their positive definiteness because
in general case both functions f (i)(z) (i = 1, 2) are
only positive semidefinite quadratic forms. To avoid
this problem, we modify the system (20) as follows.
Let λ > 0 be a small parameter and let

f
(1)
λ (z) =

s∑
i=1

α2
i z

2
i + λ2 ·

n∑
i=s+1

z2i ,

f
(2)
λ (z) = λ2 ·

s∑
i=1

z2i +
n∑

i=s+1

β2
i z

2
i .

(21)

We can assume that all parameters α2
i (i = 1, . . . , s)

and β2
i (i = s+1, . . . , n) are positive, otherwise instead

of related zeros we may add small positive terms in the
same way as before. So instead of the system (20) we
have

ż = A∗(t)z + f
(1)
λ (z) · d(1) + f

(2)
λ (z) · d(2) + w(t),

z0 ∈ Z0 = E(a∗0, Q
∗
0),

w(t) ∈ W = E(â∗, Q̂∗), t0 ≤ t ≤ T,
(22)

where functions f (i)
λ (z) (i = 1, 2) are positive definite

quadratic forms.
Using results [Filippova, 2014], we may conclude that

if we find the external ellipsoidal estimates for the mod-
ified system (22) then they will be close to external
ellipsoidal estimate of the original system (18) (and
therefore (17)) in the Hausdorff metric for small λ > 0.



We may formulate now the following scheme that pro-
duces the external estimate of trajectory tube X(t) of
the system (22) with given accuracy.

Algorithm. Subdivide the time segment [t0, T ] into
subsegments [ti, ti+1] where ti = t0 + ih (i =
1, . . . ,m), h = (T − t0)/m, tm = T .

1. Given Z0 = E(a∗0, Q
∗
0), take σ = h

and define ellipsoids E(a(1)(σ), Q(1)(σ)) and
E(a(2)(σ), Q(2)(σ)) from Theorem 3.

2. Find the smallest (with respect to some criterion
[Chernousko, 1994; Kurzhanski and Valyi, 1997])
ellipsoid E(a∗, Q∗) which contains the intersec-
tion

E(a∗, Q∗) ⊇
E(a(1)(σ), Q(1)(σ))

⋂
E(a(2)(σ), Q(2)(σ)).

3. From Theorem 1 find the ellipsoid E(a1, Q1)
which is the upper estimate of the sum
[Chernousko, 1994; Kurzhanski and Valyi,
1997] of two ellipsoids, E(a∗, Q∗) and σE(g,G):

E(a∗, Q∗) + σE(g,G) ⊆ E(a1, Q1).

4. Consider the system on the next subsegment
[t1, t2] with E(a1, Q1) as the initial ellipsoid at in-
stant t1.

5. Next steps continue iterations 1-3. At the end
of the process we will get the external estimate
E(a(t), Q(t)) of the tube X(t) with accuracy
tending to zero when m → ∞.

The following example illustrates the main procedure
of the above algorithm.
Example 2. Consider the following control system

with two quadratic forms in its dynamical equations:

{
ẋ1 = 1.5x1 + x2

1 + 2x2
2 + u1,

ẋ2 = 1.5x2 + 2x2
1 + x2

2 + u2,

x0 ∈ X0, t0 ≤ t ≤ T.

(23)

Here we take t0 = 0, T = 0.3, X0 = B(0, 1) and
U = B(0, 0.1). Steps of the Algorithm of constructing
the external ellipsoidal estimate E(a(t), Q(t)) of the
reachable set X(t) are shown in Fig. 2.

5 Conclusions
The paper deals with the problems of state estima-

tion for uncertain dynamical control systems for which
we assume that the initial system state is unknown but
bounded with given constraints.
Basing on the results of ellipsoidal calculus developed

earlier for linear uncertain systems we present the mod-
ified state estimation approaches which use the special
quadratic structure of nonlinearity of the control system

Figure 2. Algorithms of ellipsoidal estimating of the trajectory tube
X(t): several steps.

and allow to construct the external ellipsoidal estimates
of reachable sets. The special case when the quadratic
form in the equations of dynamics of the controlled sys-
tem may be not positive definite is studied.
Examples and numerical results related to procedures

of set-valued approximations of trajectory tubes and
reachable sets are also presented. The applications of
the problems studied in this paper are in guaranteed
state estimation for nonlinear systems with unknown
but bounded errors and in nonlinear control theory.
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