
PHYSCON 2009, Catania, Italy, September, 1–September, 4 2009 
 
 

Polar pumped current in quantum nano rings  
 

Edris Faizabadi 
Department of Physics 

Iran University of Science and Technology 
16844 Tehran, Iran 

 Edris@iust.ac.ir 
 
  

Abstract 
By applying electric harmonic signals on two 
point of a quantum ring with phase difference 

, the induced current is calculated 
theoretically. The method is based on defining 
all the operators in the Hilbert space of side 
band states defined in terms of Floquet theorem. 
Using this method, we have calculated the 
electronic pumped current as a function of 
phase difference of applied electric signals. By 
controlling on phase difference, it is shown that 
a polar pumped current can be induced in 
quantum ring.  
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1. Introduction   
Quantum rings, which are artificial  nanoscale  
clusters that confine electrons in three dimensions, 
have attracted increasing attention due to their 
unique physical properties. 
Recent successful fabrication of self-assembled 
quantum rings (QR’s) in nanometer dimensions 
[Garcia, 1997; Lorke, 2000; Mailly, 1993; 
Mano, 2005] has triggered a great deal of 
interest in theoretical and experimental 
researches. In such tiny systems, the wavelength 
of electrons is comparable to the system size, 
and thus quantum effects become significant.  
Quantum rings, which are artificial nanoscale 
clusters that confine electrons in three 
dimensions, have attracted increasing attention 
due to their unique physical properties, such as 
high oscillator strength for the ground-state 
band-to-band transition [Pettersson, 2000], 
magnetic flux trapping of conducting or 
superconducting rings [Bagci and  Matveev, 
2002], possible tunable electronic states, stable 
vortex states of magnetic rings [Li, 2001; Yoo, 

2003], large negative excitonic permanent 
dipole moment [Warburton, 2000], optical 
emission from a charged single quantum ring 
[Warburton, 2000],‘bamboo’ states of high-
aspect- ratio magnetic rings [Wang, 2005] and 
tunable optical resonance of metal rings 
[Aizpurua, 2003]. The subject of parametric 
electron pump has attracted considerable 
attention in recent years [Wei and Shutenko, 
2000]. An electron pump is a device which 
drives an electronic current by cyclic 
deformation of two or more system parameters 
[Aleiner and Brouwer, 1998]. This interesting 
device operates at zero bias potential. The idea 
of producing current by cyclic deformation of 
the system parameters was originally purposed 
by Thouless [Thouless, 1983].  
Quite recently, this phenomena was observed 
experimentally by Switkes et al [Switkes, 
1999]. for an open quantum dot where the 
pumping signal was adiabatically produced by 
cyclic variation of the confining potential. They, 
also, observed that in the weak pumping regime 
the pumped current is sinusoidal in the phase 
difference of deforming potential and non-
sinusoidal in the strong pumping regime. 
 The original parametric pumping theory was 
formulated for the adiabatic regime, which is 
valid up to first order in the pumping frequency. 
Based on the adiabatic theory, the total charge 
pumped per cycle is proportional to the area 
enclosed by the path in the parameter space, and 
nonzero current requires at least two 
parameters. This condition is met for the input 
potentials having nonzero phase difference. But, 
this theory is not consistent with the observed 
experimental results for zero phase difference. 
The general expression for the averaged 
pumped current based on the time dependent S-
matrix method for the adiabatic regime was 
derived by Brouwer [Brouwer, 1998]. It is 
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important to note that the adiabatic condition 
dose not imply that the pumping amplitude 
should be small, in fact, the adiabatic condition 
requires that the oscillation period of the system 
parameters to be much larger than the Wigner 
delay time, the time that characterizes the 
duration of the interaction. In an attempt to go 
beyond the adiabatic approximation C. S.Tang 
and C. S. Chu considered a nonadiabatic 
quantum pumping phenomenon in a ballistic 
narrow constriction. They also studied the 
pumping effects of a pair of finite finger-gate 
array on a narrow channel. In another attempt to 
go beyond the adiabatic approximation, S.L. 
Zhu and et al based on the Floquet theorem, 
have developed a method for calculating the 
current in quantum pumps valid for all regimes. 
They calculated the pumped current through a 
mesoscopic region in the presence of a time-
periodic potential. Interestingly, their method 
show nonzero pumping current at zero phase 
difference for asymmetric pumping amplitudes, 
consistent with the observed experimental 
values. [Switkes, 1999]  
In this work, by invariant embedding method, 
we formulate the theory of pumped current for 
one dimensional quantum ring in tight binding 
approximation. By using Floquet theorem and 
the recursive method, the charge pumped 
current is calculated numerically versus the 
phase difference of the harmonic signals. 
Specially, it is shown that the magnitude and the 
polarity of the pumped current in the quantum 
ring depend on the phase difference. 
 

2. The system in tight binding model  
 
We consider a system of spinless electrons on a 
quantum ring with N sites. The time dependent 
Schrödinger equation of the system in the tight 
binding approximation by applying signals on 
the sites -1 and +1 is; 

)(|)(ˆ)1(|)(|

)(|)](ˆ[

1,1,

0

nnVntnt

nHE

nnnn

nFl

ψψψ

ψω

+−−−

=+

−+    (1) 
where n labels the sites of the quantum ring and 

 is the hopping parameter between sites n 
and n+1 and m  labels the side-band states 
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Equation (1) has the formal form of the tight 
binding Schrödinger equation with , and 

 being operators acting on the Hilbert 
space of the side-band states. 
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( )nψ̂  is the solution of Schrödinger equation. We 
obtain left and right transmission operators and 
finally the average pumped current is evaluated 
by; 
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where f(E) is the Fermi-Dirac distribution 
function at zero temperature and it is supposed 
that the incoming wave is in the side-band state 
m=0 with energy E. 
 

3. Results and Conclusion 
 

We apply the method developed in the previous 
section to calculate the pumped current at zero 
temperature as a function of the phase 
difference. For all the calculations the 
dimension of the side-band space are taken to 
be equal to 41.  
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Figure.1. The charge pumped current in unit of 

hπ/0et  for frequencies  3.0=ω  and 
1.0== −+ VV  (weak regime) as a function of the 

phase difference φ , for harmonic input electric 
signals. The energy scale is , . 0t 0.0=fE
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Figure.2. The charge pumped current in unit of 

hπ/0et  for frequencies 3.0=ω  and 
 (strong regime)  as a function of 

the phase difference 
6.0== −+ VV

φ , for harmonic input 
electric signals. The energy scale is ,  
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Figure.3. The charge pumped current in unit of 

hπ/0et  for frequencies  4.0=ω  and 
 (weak regime) as a function of 

the phase difference 

1.0== −+ VV

φ , for harmonic input 
electeric signals. The energy scale is , 
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Figure.4. The charge pumped current in unit of 

hπ/0et  for frequencies  4.0=ω  and 
6.0== −+ VV  (strong regime)  as a function of 

the phase difference φ , for harmonic input 
electric signals. The energy scale is , 
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This gives an accuracy of better than  for 
the calculated pumped currents. Also we 
consider chemical potential,

810−

μ , equal to zero 
and the hopping parameters,  =  , equal to 
one, as shown in figure 1, 2, 3 and 4 the 
pumped current is calculated as a function of 

the phase difference 

1, +nnt 0t

φ , for harmonic input 
signals in units of hπ/0et  for frequency  3.0=ω . 
We show that by controlling the phase 
difference it is possible to change the direction 
of current and so the magnetic  polarity of the 
quantum ring. It is important to notice for the 
phase difference equal to zero or π , the 
pumped current is zero. This can be realized the 
pumped current in adiabatic theory depends on 
the enclosed area in parameter space. In this 
symmetric case, the enclosed area in the 
parameter space is zero and as a result a 
vanishing pumped current. 
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