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Abstract
In this paper we review some recent results ob-

tained in our research group, on the general ques-
tion of the emergence of persistent infection in a
closed region [Agrawal, Moitra & Sinha (2017)].
Specifically, the disease progression of the individ-
uals is given by the Susceptible-Infected-Refractory-
Susceptible (SIRS) cycle, and we investigate different
degrees of heterogeneity in the initial population by
considering varying fractions of the initial population
in different disease compartments, and by varying the
spread in the phases of disease progression among the
individuals. Our central observation is that when the
initial population is uniform, consisting of individuals
at the same stage of disease progression, infection aris-
ing from a contagious seed does not persist. However
when the initial population consists of randomly dis-
tributed refractory and susceptible individuals, a sin-
gle source of infection can lead to sustained infection
in the population, as heterogeneity facilitates the de-
synchronization of the phases in the disease cycle of the
individuals. In particular, we show that the infection
eventually dies out when the entire initial population
is susceptible, while even a few susceptibles among
an heterogeneous refractory population gives rise to a
large persistent infected set.
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1 Introduction
How a disease spreads in a population is a question of

considerable interest and practical relevance, and con-
sequently has seen extensive research interest over the
years [Heathcote (1976); Cliff & Haggett (1984)]. At-
tempts to understand the various dynamical aspects of
disease spreading has led to the exploration of various
classes of models with features of infectious dynamics

[Rhodes & Anderson (1996); Earn et al. (2000); Ku-
perman & Abramson (2001); Gade and Sinha (2005);
Kohar & Sinha (2013)].
In this work we will explore the following crucial

question, that has not seen much focus yet: what popu-
lation compositions are conducive to the emergence of
long-term persistence of infection in a population? In
order to address this question we will consider cellular-
automata based descriptions of infection spreading, for
a disease that has temporary immunity [Kuperman &
Abramson (2001); Gade and Sinha (2005)]. We will
consider initial populations with varying degrees of
global heterogeneity, reflecting increasing diversity in
the condition of the individuals comprising the popula-
tion. Our attempt will be to ascertain the influence of
this heterogeneity on the persistence of infection.

2 Model

Figure 1. Schematic Representation of the SIRS cycle. The color
scheme in all figures is as follows: black represents the refractory
state (R); white represents the susceptible state (S); red represents
the infected state (I).

In this work we will consider a well known
model for non-fatal communicable disease progres-
sion is the Susceptible-Infected-Refractory-Susceptible
(SIRS) cycle. This model appropriately describes the
progression of diseases such as small pox, tetanus,
influenza, typhoid fever, cholera and tuberculosis.
Specifically, we consider a cellular automaton model



of the SIRS cycle, as shown in Fig. 1 [Kuperman &
Abramson (2001); Gade and Sinha (2005); Kohar &
Sinha (2013)]. In this model of disease progression,
time t evolves in discrete steps, with each individual,
indexed by (i, j) on a 2 dimensional lattice, character-
ized by a state variable τi,j

τi,j(t) = 0, 1, . . . , τI + τR (1)

describing its phase in the cycle of the disease [Kuper-
man & Abramson (2001)]. Here τI + τR = τ0, where
τ0 signifies the total length of the disease cycle.
The dynamics of the state τi,j(t) is given by the fol-

lowing transition rules:

τi,j(t+ 1) = τi,j(t) + 1 if 1 ≤ τi,j(t) < τ0
= 0 if τi,j(t) = τ0

}
(2)

With no loss of generality we consider τI = 4; τR =
9; τ0 = 13 and a lattice of size 100× 100.
Notice that there are two distinct features determin-

ing the local state of the individuals. The first is the
transition from the susceptible to the infected state de-
termined by the state of the immediate neighbourhood,
which is stochastic in nature and dependent on the dis-
tribution of initial states of the individuals in the popu-
lation. The second feature is the deterministic disease
cycle: I→ R→ S. This interplay of a probabilistic fea-
ture and a deterministic cycle shapes the dynamics of
disease in the population.

2.1 Heterogeneity
In the present study, we consider heterogeneity to be

non-uniformity in the states of the individuals. This
may be characterized in different ways. Consider a
generic initial population patch comprised of a random
admixture of susceptible, infected and refractory indi-
viduals, given by initial fractions S0, I0 and R0. So,
if either S0, I0 or R0 tends to one, we have a homoge-
neous situation where almost all individuals are in the
same state, namely almost all susceptible (S0 → 1), or
almost all infected (I0 → 1), or almost all recovered
(R0 → 1). Increasing deviations from this reflects in-
creasing heterogeneity in the population, as it implies
an increasing spread among different disease compart-
ments. Further, a source of heterogeneity arises from
non-uniform stages of disease within a disease com-
partment. We therefore study the influence of hetero-
geneity in individual phases within the refractory sub-
population on the persistence of infection in the popu-
lation as well.

3 Observations
Having described the dynamics of the model, and hav-

ing defined heterogeneity in the context of the present
study, we first focus on infection spreading patterns.

3.1 Non-persistent Infection in a Homogeneous
Susceptible Population

We observe that starting from a homogeneous initial
condition, such as all susceptible (Fig. 2), the system
simply undergoes a relaxation oscillation, and infection
does not persist.

Figure 2. Snapshots at times t = 0, 25, 67, 99, showing the
spread of infection from one infected individual at t = 0, in a ho-
mogeneous susceptible initial population (i.e. S0 ∼ 1, R0 = 0,
I0 ∼ 0). The color bar bar shows the relative lengths of the suscep-
tible (S), infected (I) and refractory (R) stages in the disease cycle,
where τI = 4, τR = 9 and the total disease cycle τ0 is 13 (see
text). The red box shows the fraction of S, I and R individuals in the
population at that instant of time [Agrawal, Moitra & Sinha (2017)].

The key factor in infection spreading is the contact of
susceptible individuals with infected ones. It is clear
that such an interaction takes place only at the outer
edge of the wave of infection, while the inner boundary
of the infected zone is contiguous only to refractory
individuals. So the infection only spreads outwards,
and does not move back into the interior of the lattice
again.

3.2 Persistent infection in Heterogeneous Popula-
tions

Next we investigate the infection spread in the more
realistic scenario where both refractory (τi,j > τI ) and
susceptible individuals (τi,j = 0) are present in the ini-
tial population, and are randomly distributed spatially.
We first consider the case where the refractory individ-
uals have phases τi,j = τI + 1, namely, they are at
the start of the refractory stage of the disease cycle.
We investigate the persistence of infection in hetero-
geneous populations, with the initial state having (a) a
single seed of infection (Fig. 3) and (b) varying initial
fractions of infected individuals (I0) (Fig. 4). In both
scenarios, we analyze the effect of varying S0 and R0

on the persistence of infection.



Figure 3. Snapshots of the infection spreading pattern in a het-
erogeneous population comprising initially of a random mixture of
equal numbers of susceptible and refractory individuals (S0 ∼ 0.5,
R0 ∼ 0.5 and I0 ∼ 0), with one infected individual at t = 0.
Here the refractory individuals have phases τi,j = τI+1 (namely,
they are at the start of the refractory stage of the disease cycle). Inter-
estingly, the spatially random population evolves into a more regular
pattern after a short transient time [Agrawal, Moitra & Sinha (2017)].

It is worth noticing that some of these spreading pat-
terns are reminiscent of coalescing and interacting spi-
ral waves initiated by local inhomogeneity in a uniform
background.

Figure 4. Snapshots of the infection spreading pattern in a hetero-
geneous population comprising initially of a random mixture of indi-
viduals, with S0 = R0 and I0 = 0.1 [Agrawal, Moitra & Sinha
(2017)].

Next we focus on the time evolution of an initial pop-
ulation consisting of a random mixture of S, I and R
states. A typical random initial condition is shown in
Fig. 4, with the initial fraction of infected sites I0 be-
ing one-tenth and the initial fraction of susceptibile and

refractory individuals being equal (i.e. S0 = R0).

Figure 5. Time evolution of It, St, Rt, in a heterogeneous popu-
lation comprising initially of a random mixture of individuals, with
S0 = R0 and I0 = 0.1.

Here too we find that infection is sustained. Further,
interestingly, it is clear that there is an approximate re-
currence of the fractions (Fig. 5) and the complex pat-
terns of infected individuals in the population.

4 Results
We now attempt to gauge the statistically significant

trends in It, by averaging the fraction of infected indi-
viduals at asymptotic time t, arising from a wide range
of random initial configurations at time t = 0. We de-
note this by 〈It〉. In terms of this quantity, persistent
infection is indicated by a non-zero value. However,
after sufficient transient timesteps, if 〈It〉 is zero, it in-
dicates that the infection has died out. So 〈It〉 can serve
as an order parameter for the transition to sustained in-
fection in a population.

4.1 Dependence of persistence of infection on the
initial fraction of susceptibles

For fixed τI and τ0 we have calculated 〈It〉, for differ-
ent initial fractions of susceptible individuals S0, and
a single infectious seed. We explore the full possible
range of S0 ∈ [0, 1], where S0 = 0 signifies a popu-
lation comprised entirely of refractory individuals who
are immune to infection initially, and S0 = 1 implies
an initial population comprised entirely of individuals
susceptible to infection.
The results obtained from a large sample of initial

states is shown in Fig. 6, and it is evident from there
that 〈It〉 is very low for both high and low S0, peak-
ing around S0 ∼ 0.65 − 0.75. Namely, homogeneous
initial populations where all individuals are immune
(S0 = 0), or all are susceptible to disease (S0 = 1),



Figure 6. Variation of 〈It〉 (after transience) with respect to the
fraction of susceptible individuals in the initial population S0, aris-
ing from the presence of a single infected individual at time t = 0.
Here It is averaged over 103 realizations of the initial population
on the lattice. The specific case of a 100 × 100 lattice is dis-
played. However note that different lattice sizes yield the same result
[Agrawal, Moitra & Sinha (2017)].

do not yield persistent infection. Rather, mixed popula-
tions lead to most sustained infection, with persistently
high numbers of infected individuals.

4.2 Dependence of persistence of infection on the
initial fraction of infecteds

We consider an ensemble of initial conditions, with
specific I0 ∈ [0, 1], S0 and R0 and find the time aver-
aged It, after long transience for each realization. The
ensemble average of this quantity is displayed in Fig. 7.
Notably, we find that there is a definite window of per-
sistence over the range of I0, where the infection never
dies down and the fraction of infected individuals in the
population is reasonably high on an average.
The transition to persistent infection is sharp and oc-

curs at I0 → 0. This implies that the infection can
spread and persist even when there is only a single in-
fected individual in the initial population. This is con-
sistent with the results we presented earlier (cf. Fig. 6)
on infection spreading from a single infected individ-
ual.

4.3 Effect of varying degrees of non-uniformity in
the refractory sub-population on the persis-
tence of infection

The effect of initializing the refractory sub-population
with a spread in their phases τi,j ∈ [τI + 1, τ0] was
found to enhance persistence in general. We employ
two ways of interpolating between completely uni-
form and completely heterogeneous states within the
R0 sub-population:

1. A fraction frand of the R0 is initialized with
phases in the range [τI + 1, τ0], and 1 − frand is

Figure 7. Variation of 〈It〉 (after transience) with respect to the
initial fraction of infected individuals I0 in the population, and
S0 = R0. It is averaged over 103 initial realizations. The specific
case of a 100×100 lattice is displayed. However note that different
lattices sizes yield the same result [Agrawal, Moitra & Sinha (2017)].

initialized with a fixed phase τI + 1.
2. The phases of R0 are selected from a range of

phasesRrand, which varies from [τI +1, τI +1] to
[τI+1, τ0]. The range [τI+1, τI+1] implies allR0

individuals are initialized at τI +1, and [τI +1, τ0]
implies the initial phases are spread over the entire
range.

In the following results, It is averaged over 103 real-
izations, lattice size is 100× 100, and the disease cycle
parameters are τI = 4, τ0 = 13.

Figure 8. Variation of 〈It〉 (after transience) with respect to initial
fraction of susceptible individuals S0, for different fractions frand
of the initial refractory sub-population having randomly distributed
phases (see key).

A complete discussion is presented in [Agrawal,
Moitra & Sinha (2017)].



Figure 9. Variation of 〈It〉 (after transience) with respect to the
initial fraction of infected individuals I0 in the population, and
S0 = R0. The initial refractory sub-population consists of dif-
ferent fractions frand with randomly distributed phases (see key).

Figure 10. Variation of 〈It〉 (after transience) with respect to ini-
tial fraction of susceptible individualsS0, for the case where there is
a single infected individual in the population at the outset, and the
refractory individuals in the population have phases τ randomly dis-
tributed over different ranges Rrand in the refractory stage : [5,5];
[5,7]; [5,9]; [5,11]; [5,13].

5 Discussion
In summary, we have explored infection spreading

qualitatively and quantitatively in a patch of popula-
tion, where the disease progression of the individuals
was given by the SIRS model. We have focused on the
emergence of persistent infection in the patch, under
varying degrees of heterogeneity in the initial popula-
tion.
We consider varying fractions of the initial population

in different disease compartments. Our central result
is the following: we find that an infectious seed does
not give rise to persistent infection in a homogeneous
population consisting of individuals at the same stage

Figure 11. Variation of 〈It〉 (after transience) with respect to ini-
tial fraction of infected individuals I0, for the refractory individuals
having phases τ randomly distributed over different ranges Rrand

in the refractory stage : [5,5]; [5,7]; [5,9]; [5,11]; [5,13].

of disease progression. Rather, when the population
consists of randomly distributed individuals at various
stages of the disease, infection becomes persistent in
the population patch.
The key to persistent infection is found to be the ran-

dom admixture of refractory and susceptible individu-
als, leading to de-synchronization of the phases in the
disease cycle of the individuals. So we have demon-
strated that when the entire population is susceptible to
infection, the infection eventually dies out, while even
a few susceptibles among a heterogeneous refractory
population gives rise to a large persistent infected sub-
population.
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