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Abstract trol systems ([Branicky et al., 1998; Boccadoro et al.,

We study an optimal control problem for a measure- 2005])
driven dynamic system, where jumps of a state trajec-
tory may occur only at the moments of hitFing a given @ = fo(t,x) = f(t,z(t),q(t))
set. The model can be described by using the com-
plementarity formalism. The system is not assumed to
satisfy correctness conditions. A time reparameteriza- . _ ) L
tion technique is developed to reduce the optimization Hereq(t) € Q is a “logic” variable distinguishing the
problem to the one with bounded controls. Necessary M0de, in which the state(t) of the system evolves,
conditions for optimality are obtained by interpreting < IS @ £nite subset of, the function¥ represents
the Maximum Principle in the reduced problem. a £nite automaton as follows¥ (7, z(7—), i, v7) =
jryx(r—),v,) € Q,wherej(r,z(t—),v,) = jr(v,)
if (1,2(7—)) € Zk.
Key words Model (1), (2) can be treated as the discrete-
Optimal control, impulsive hybrid systems, comple- continuous system with intermediate state constraints
mentary systems, necessary conditions of optimality.

)

q =0, Q(T) = \IJ(T’m(T_)7Q(T_)7VT)'

g=f(t,z,u)+ Y U(r,a(ri-),v(n)s(t—7), (3)
1 Introduction Tist
A number of hybrid models can be naturally for- z(r;) € Z Vi. 4)
malized by means of systems with impulsive impacts
[Branicky et al., 1998; Matveev and Savkin, 2000; An optimal control problem for systems of this kind
Kurzhanski and Tochilin, 2009; Miller and Rubinovich, was investigated in [Dykhta and Samsonyuk, 2000],
2003]. Inthe literature (see, e.g., [Branicky etal., 1998; when the points; in (4) and the instants of impulses
Haddad et al., 2002; Sanfelice et al., 2006]), one canin (3) are independent of each other. We address the
meet hybrid systems of the following type: case, when intermediate constraints (4) are to be satis-
£ed precisely at the instants of impulses. Therefore, an
additional mixed constraint appears.
() On the other hand, one can see a hidden complemen-
1), ifz(t—) e 2. (2) tary nature of system (1), (2). Indeed, pyt= v(7;)
and de£ne the discrete vector measure
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Herelz(t)] = z(t) —z(t—) stands for a jump of a func-

tion x[ a(t )t]he péilzntt, 7E is)a resetting sétanzu andv du(t) = Z vid(t—m;)dt.
are controls. As opposed to systems with purely exoge- TSt

nous impulsive controls, in model (1), (2), impulses can
occur only at the moments, when a state trajectory hits
the resetting sek. In other words, impulses in this sys-
tem are state-dependent. This fact reveals a distinctive T =7i(z) € {t:z(t—) € Z},

hybrid feature of the model. For instance, an impor-

tant subclass of (1), (2) is constituted by switched sys- which is supposed to hold for aif; in the summa-
tems with controlled switchings, or logic-dynamic con- tion above. Assume thak(¢,2,0) = 0 for all ¢ and

We can treat (4) as a constraint of the form



x, that is no switching may happen without applying in population models with impulsive effects. In our
a nonzero controb. Such an assumption conforms model, measures play the role of control inputs, and the
to the practical sense of many hybrid models. Then, complementarity reveals itself in the form of a specifc
the defned discrete measuhe is localized on the set  constraint on the control measure.
A={t:z(t—) € Z}. In other wordsdu(E) = 0 for
any Borel subsek’ of the complement ofl.

Now we consider a more general model

2 Problem Formulation

dr = f(t,z,u)dt + G(t,z)dp, (5) Consider a probleniP) of minimization of a func-
du is localized on{t : z(t—) € Z}, (6) tional I = F(«(T),V(T)) under the following con-
straints:

by admitting that a control measure possesses also a
continuous component in its Lebesgue decomposition.

Inits turn, system (5), (6) can be classifed as a comple-  dz = f(t,z,V,u)dt + G(t,z, V) dp, (10)
mentary one [Van der Schaft and Schumacher, 2000], dV = |dy|, (11)
where constraint (6) is interpreted as tt@mplemen- 2(0-) = 2°, V(0—) =0, (12)
tary slackness conditiorindeed, it is well known that

V(T) < M, (13)

given a closed sef in a £nite-dimensional space, one
can constructively determine a continuous (and, even, u(t) € Ut € [0,T], du(E) € W VE € Bjg 1},(14)
inf£nitely smooth) functior), characterizingz in the (t,z(t—),V(t—)) € Z_ |du|-a.e. on0,T].  (15)
following senseQ(z) > 0 for all z, andQ(x) = 0 iff
x € Z. Introduce the new variable
Here,z(-) € BV([0,T],R™), V(-) € BV([0,T],R)
z(t) = Qz(t—)) > 0. are right continuous functions of bounded variation,
controlsu(-) are Borel measurable bounded functions,

By using the complementary formalism (see, e.g., [van € SetU C R is compact, the inclusion(t) € U

der Schaft and Schumacher, 2000]), system (5), (6) Canholds L-a.e. (almost everywhere with respect to the
be rewritten as follows Lebesgue measure). Contrafg are regular mea-

sures induced by functiong(-) € BV ([0,T],R™),

1(0—) = 0. The setlV is a closed convex cone in
dz = f(t,z,u)dt + G(t,z)dp, dV = |du|, (7) the nonnegative orthat”’, B, 1) stands for ther-
z(t) = Q(z(t—)), (8)  algebra of Borel subsets of the intery@J 7], M > 0.
0<% 1LdV >0. (9) The setz_ C [0,7] xR"™ xR is supposed to be closed,
and called theesetting setThe functionsf andG are
Lipschitz continuous in all variables and satisfy the lin-
ear growth conditions with respect toandV, F'is
continuous.

Here|dp| stands for the measure induced by the total
variation of the function. Inequalities in (9) hold triv-
ially, dV° > 0 means that the measure is nonnegative
for any Borel subset of the time interval. The notation We do not impose Frobenius type correctness condi-
z L dV, which is typical in the complementary for- tions. As is well known, this implies that the reaction
malism, means here thatvanishes almost everywhere of the system to impulses is not unique and strictly de-
with respect to the measudd’. pends on a particular kind of approximation of a gener-
There is a subtle but essential difference between alized impulsive control by conventional ones. This re-
model (7)—(9) and mechanical systems with unilat- sults in arising an integral funnel of the measure-driven
eral constraints [Brogliato, 2000; Miller and Bents- system under a given control.

man, 2006]. The latter systems also form a certain By (Py) we denote problentP), where (15) is re-

class of complementary hybrid systems and can bepjaced with the following equivalent mixed constraint:
described by measure differential equations. In such

models, the complementary forces (e.qg., elastic or fric-

tion ones) act, when a body comes into contact with an

“obstacle?’, and are aimedyat preventing the violation Qr,2(r=), V(r=)) = 0ldp|-a.e. onl0, T]. (16)
of the unilateral constraints. Measures describing ac-
tions of the complementary forces are not regarded as
actual controls, they are rather required for physically
adequate defning the system dynamics. The space
time reparameterization proposed in [Miller and Ru- Given controlsu, anddu, we defne drajectory of
binovich, 2003] takes into account that “fast motions” system (10)—(12) as an individual curve of the integral
occur only in a forbidden domain. However, such tech- funnel of (10)—(12). In other words, by a trajectory of
nique is not applicable in many switched systems, say, (10)—(12) we mean a couple of functiofis, ), satis-

Here, a scalar nonnegative continuous functjbis as-
sumed to vanish only on the resetting et.



fying everywhere o1f0, T'] the conditions

a(t) = a" +/tf(97x,V7U)d9+
0

+ /O G(0,2,V)due(0) + > [x(r)], (17)

vw=£muw+2wmy (18)

The sums in (17), (18) are taken over alle D,
such thatr < ¢. By D, we denote the sefr <
[0,T] : [u(7)] # 0} of all points of jumps of the
function u. The notationdu,. stands for the continu-
ous component of the measute, meaning the sum of
its absolutely continuous and singular continuous parts.
Jumps of the functiong and V' at the pointsr are
defned by{z(7)] = s, (v;) — z(7—) and [V (7)]
rr(vy) — V(r—). Herev, = |[u(7)]|, while 5, andr,
satisfy the system

G

X

(7—7 %(0)7T(0))67(0)’ T(e) =1,

(7). 1(0) = V), (19)

under a controt, (-), which meets the constraints

e, (0) eWnNB, §el0,v,],

[ ety = i) 0)

We assume that functions are Borel measurable on
[0,v,], B is the m-dimensional unit ball (centered at
zero) with respect to the norm |, e] = 37", |e;].

We call system (19), (20) thémit one. Denotes, =

(5¢r,7,). Atuple

0= (1’(), V()a u()a dua {K:‘r(')a eT(')}TGD“) 3

satisfying the conditions (13), (14), and (16)—(20), is
called anadmissible control processf system (10)—
(15). The setx(Pg) of all admissible processes of
problem (Py) is honempty, at least processes corre-
sponding to the null measud are admissible.

3 Problem Transformation

The time reparameterization method is a well-known
and powerful tool in impulsive systems theory. In opti-
mal impulsive control such a technique is effectively
applied to derive necessary conditions of optimality

(see, e.g., [Vinter and Pereira, 1988; Bressan and

Rampazzo, 1994; Silva and Vinter, 1997; Zavalischin
and Sesekin, 1997; Pereira and Silva, 2000; Miller
and Rubinovich, 2003]). In optimization of discrete—

control [Goncharova and Staritsyn, 2010]. For optimal
control problems of hybrid systems with unilateral con-
straints the technique was suggested as a development
of the penalization method.

A classical approach to treat state discontinuities con-
sists in regarding them as results of motions in a “fast
time scale”. The main idea of the time change tech-
nique is to make such fast motions comparable in du-
ration with motions in the natural time scale by means
of an appropriate extension of the instants of impulses
into intervals. In the present section we use this idea
to reduce problenfPy) to the one with conventional
bounded controls. For probleifPy), the reduction
[Miller and Rubinovich, 2003] is inadequate, since we
are to meet constraint (16). To keep the information on
hitting the resetting set over the intervals of fast mo-
tions, we extend the state space.

Assume that the functiong and G satisfy the Lip-
schitz and linear growth conditions also in On an
un£xed time intervald, S], T < S < T'+2M, we con-
sider the following optimal control problefRP): We
are to minimize the functional = F(y1(S),n1(S5))
under the constraints

E=a, ni=(1-a)blel, G=(1-a)bie, (21)
gi=af(§ y1,n,v)+(1-a)B8; G(& yi,mi) e, (22)

£(0)=m:(0) =0, ¢(0)=0, y;(0)=2°, (23)

g(S):T7 N2 —M S Oa (24)

velU ee WNB, a,f3; € [0, 1], 51—}—52:1,(25)
S

JIZ/ (b(gay>,r/7<7aaﬁ7e)d8:0' (26)
0

Here, trajectorieg, y, n, and are absolutely con-
tinuous, controls, «, 3, ande are Borel measurable
bounded functionsy = (y1, y2) and similar notations
are used for), ¢ andg. The setd/ andW are the same
as in (14). The functio® has the form

® = a(p(Ay) + ¢(AQ)) +(1—a)B1elQ(&, y2,m2),

wherep(z) andy(p) are scalar nonnegative continuous
functions vanishing only at zerdyy = y; —y2 andA(
is de£ned similarly.

By X(RP) we denote the set of all control processes
& = (v, w; S), which are admissible in proble(®P),
i.e., satisfy constraints (21)—(26). Heye= (£, y, 7, <)
andw = (v, o, 8, e).

Theorem 1. Giveno € £(FPgp), there exists a process
& € X(RP) such that, for alt € [0, T, the equalities

z(t)=yi(L(t)), V() =m(I'(t), i=1,2, (27)

hold, wherel'(¢t) =t + 2V (t), and S =T'(T).

continuous systems and measure driven equations it isThe proof is based on a change of variable under the

used to design computational algorithms for optimal

sign of Lebesgue—Stieltjes integral and invokes the



properties of the time reparameterization ([Miller and
Rubinovich, 2003]). The functiolr plays the role of
the “inverse time transformation”. It is right continu-
ous and strictly monotone increasing [n7']. Defne

a function¢ by the relation

&(s) =inf{t: T'(t) > s}, s €0,5].
Then,&(I(t)) = tforall ¢t € [0,7], andT'({(s)) = s,
if t = £(s) is the point of continuity of".

The desired admissible controlin the reduced prob-
lem can be constructively de£ned by the following di-
rect space-time transformation. Consider the union
Q = U,ep, Q- of the intervalsQ, = [['(7—),T'(7)],
whereDr = {7 € [0,T] : [['(7)] > 0}, and introduce
the notations

Q0 =T(r—)+10,[V(7)]),
QL =T(r—) + [[V(7)],[T(")]],

Y =U,ep,. ¥, j=0,1.

Controlsv, 8 ande can be determined as follows:

i,

s €,
), s €10,5]\Q

SGQO
se
1/2 s €[0,5]\ 9,

{eT (6°(s)), s € QO

67(91( ), s € Ql
where the functiong?(s) = s — I'(1—

Bo=1- P,

e(s)

- TE Dr,
1(&(s)), s €[0,5]\ 9,

) anddl(s) =

0%(s) — [V ()] are de£ned on the corresponding sets,
_du(t) . .
andi(t) = v’ t € [0,T], is the Radon—Nikodym

derivative of the measuréu with respect to the mea-
suredV. For the sought contrak one can take the
Borel measurable functiof

The following inverse statement is also valid:

Theorem 2. Giveng € X(RP), there exists a process
o € X(Pg), such that (27) hold, wherE is defned
by the relationsl'(t) = inf{s € [0,5] : &(s) > t},
te€[0,7),andl(T) = S.

The desired controls in problef®; ) can be de£ned as
follows

u(t) = v(I'(t)), pt) = (T'()), t €[0,T],
er(0) = e(s-(0))]e(s-(0))|®, where

5:(0) = 071 (s) ;= inf{s € Q, : 0.(s) > 6},
0-(s) = Br(9)]e()]dV.

I(r-)

Here we use the pseudoinversion symbpol a® =
Lifa #0,anda® =0, if a = 0.
We also can state the following result.

Theorem 3. In problem(Pg) there exists an optimal
processo*, iff there is an optimal one* in problem
(RP), moreover,

I(c*) = min I = min J = J(3").

=(Pq) Z(RP)

If o is optimal in(Pg), then the process obtained
by the direct space-time transformation is optimal in
reduced problen{RP). If 5 is optimal in(RP), then
the process obtained by the inverse transformation is
optimal in problem(Pyp).

Now, armed with the results of Theorems 1 and 3,
we can formulate necessary conditions of optimality in
problem(Pg). The conditions are obtained by inter-
preting the Maximum Principle [loffe and Tikhomirov,
1979] in problem(RP).

4 Necessary Conditions of Optimality

Note that in reduced proble(® P) there are terminal,
phase and functional constraints (24), and (26). More-
over, the problem is considered on an un£xed time in-
terval[0,5], T < § < T + 2M. Denote by(RP)
an optimal control problem which is obtained from
(RP) by replacing the constrairf < T + 2M with
72(S) < M. Notice that the condition§(S) = T and
n2(S) < M imply S < T + 2M. Given an optimal
control procesg™* € X(P), the corresponding (deter-
mined by the direct space-time transformation) tuple
&* € $(RP) will be optimal in(RP).

In what follows we assume that the functiohs, @,
and I’ are continuously differentiable in all variables.
For problem(Py) introduce the Pontryagin functions

HY (8, X, 0" 4%, u) = (", f(t, X, u)) + 7,

Ho(tv X, wxv )= "Gt X))+ UJV,
and the Hamiltonians
H! =max H', H® = max HC.
uel IEWNOB

Herey = (¢, 4*,%") is the dual vector correspond-
ingto(t,x, V), X = (z,V), andyX = (=, V).

For simplicity we can also assume that functigris
such thatV@ = 0 on Z_, and takep(z) = ||z|? and
©(n) = ||u||?, where|| - || stands for the Euclidean
norm. Necessary conditions of optimality in problem
(Pg) take the following form:

Theorem 4. Given an optimal control process* €
¥(Pg), there exists a tuple(A, {c,}repy,,dw,d)
of Lagrange multipliers, withA (Ao, ..., A3),



Aj,c; € R, Z cr < oo, dw is a regular scalar

TeDy,

measure induced by a non-decreasing function),
w(0—) = 0, and¢(-) € BV([0, T],R?>"*3), such that
the following set of conditions holds:

(C1) Nonnegativity and nontriviality:

(C2) Complementary slackness condition associated

(Cs

A07A2 ZO, Cr ZOVTGD;,
[A] +w(T) + Z cr > 0.

TED;/

with the constraint on the total impulse of control:

As(V(T) — M) = 0.

) The adjoint system and transversality conditions:

The vector functio = (¢¢, ¢:X, ¢5 ), with X =
(¢%,¢Y), i = 1,2, satisEes the following system
of measure differential equations:

d¢t = —H}dt — HYdV*,
dopyX = —Hdt — HYdV*— dw™,  (28)
do¥ = —HYdV*+ dw™,

with the initial conditions

H(T) = —(A1, Ao Fr, Ao Fy,0,A2). (29)
Here we use the notatiod$® = H® — A5Q, and
HO(t, X, ¢,1)=HO(t, X, 65, 1)+ HO(t, X, ¢ 1).

In (28) the partial derivatives off !, H°, and H°
are computed at the points, X *, ¢t, % +¢%, u*),
(t, X*, ¢, 1%), and (¢, X*, ¢, 1*), respectively,
the derivative? is taken along(X*,*), with
I* =dp*/dV*, anddw™ = (dw®,dw"") denotes
a vector measure, with the null measuke® and
dwY = dw. In (29) the derivatives of" are com-
puted at(z*(T), V*(T)).

Jumps[é(7)] of ¢ at 7 € D}, are defned as fol-
lows

[07(7)] = ( ) = pi-(0),
[0} (T)] = (=1 er + 6} () — pi(0).

The functiong!_, andpX, with pX = (p% ,pY),
satisfy on[0, vZ], vX = [V*(7)], the following ad-
joint limit system:

<t 0 * X x

p; = _Ht (T’ Kz, D 767—)7
X 0 * X  x
P = _HX(T’KT’pi ’er)v

and the conditiong! (v ) =p4(0), pb (v}) =¢' (1),
andp;* (v;) = ;" (7).
(C4) Maximum conditions:

H'(t, X", ', ¢7 + ¢5,u*) =
=H'(t, X", 9", ¢7 + ¢3), and
max{HO(t,X*, X 1), HO(t, X*, fil*)}

= max {Ho(t,X*, ¢§),ﬁ0(t7X*a ¢{()} )

hold £-a.e. anddV-a.e. on[0,T]. Here H® =
max HY.

1€dBAW

(C5) Conditions of optimality with respect to the sup-

port of the continuous part of the control measure:

H' > max {HO,’FKO} ,
L-a.e. on[0,T] \ supp{dV/},
H! < max {HO,TN[O} ,
dV;}-a.e. onsupp{dV,}.

Here functionsH!, H°, and H° are computed at
the points(t, X*, ¢!, ¢¥ + ¢%), (t, X*, ¢35 ), and
(t, X*, ¢:%), respectively.

(Cgs) Optimality with respect to processes of the limit
system:

For eachr € Dy, the conditions

HO(T7 KT?plT’ T) HO(T’ HT’plT)

Hl(Ta Hq—aphﬂph— +p27—(0)) S
HO(r, k%, pf eX) +
As{p(s; =™ (1=)) +p(w; —p* (7))},

H (1, X*(7), phr, PT, (V) + p5,) <
HO(1, k%, o eX) +

As{p(z™ (1) =) +p(p*(T)—w;)}

hold £-a.e. on[0, vf]. Here

0
wi(0) = u(7—) + / e (0)dv.

Theorem 4 is a result of a straightforward interpreta-
tion of the conditions of the Maximum Principle in the
reduced problem. This implies the appearance of the
coupled “adjoint” (as well as the “limit adjoint”) tra-
jectories due to the state space extension we applied
to formulate(RP). In fact, in problem(Pg) one can
retrieve the proper adjoint trajectofy!, =, ") by
means of the relationg? = ¢, ¥* = 1 {7 + 43},
andyV = 1 {¢} + ¢ }. Maximum conditiongC,)

are quite standard. Conditioi€;) appear to set a
right priority between the natural mode of the system



behavior (no measure type control is applied), and the Branicky, M., Borkar, V. and Mitter, S. (1998). A Uni-
dynamics governed by the continuous part of a control £ed Framework for Hybrid Control: Model and Opti-

measure. Condition&y) are to validate optimality of mal Control Theory.IEEE Trans. Automat. Contrpl
instants of impulses and a certain kind of approxima- 43(1), pp. 31-45.
tion of the impulsive control applied. Bressan, A. and Rampazzo, F. (1994). Impulsive Con-

The conditions of optimality look complicated and  trol Systems without Commutativity Assumptions.

hard to apply directly. In some particular cases (say, J. Optim. Theory and Appl81(3), pp. 435-457.

if G is a constant matrix), the result can be restated in aBrogliato, B. (2000). Nonsmooth Impact Mechanics.

more familiar form, where dimensions of the phase and Models, Dynamics and Control Springer—\Verlag.

adjoint trajectories conform with each other. London.

Dykhta, V. and Samsonyuk, O. (2000Dptimal Im-
pulse Control with Applicationg-izmathlit, Moscow.

. . Goncharova, E. and Staritsyn, M. (2010). Control Im-
The pL_erose_of the work is t(.) app_ly _mafthematlcal provement Method for Impulsive System3. Com-

togls of impulsive control theory |n.opt|m|zat|.on of hy- put. and Syst. Sciences [9(6), pp. 883-890.

brid models. In the paper we consider a particular class Haddad, W., Chellaboina, V. and Nersesov, S. (2002).

of impuI;ive hyb_rid systems described by a measure Hybrid Nonnegative and Compartmental Dynamical
differential equation, namely, state-dependent impulse Systems. Mathematical Problems in Engineering
systems. To reduce the corresponding optimal control 8(6), pp. 493-515

problem we proposed an appropriate space-time ransyge "a and Tikhomirov, V. (1979)Theory of extremal

formation, which is used to obtain necessary conditions problems North—Holland, Amsterdam

for optimality. We expect that the approach can be use- Kurzhanski. A.. and Tochilyin P. (2009). Impulse Con-

ful for making a qualitative and numeric analysis of the . .5 "Models of Hybrid, Systems, Differential

Con5|dered problem. _ Equations45(5), pp. 731-742, Pleiades Publishing.
With problem (P) we can associate the problem, y - weey A and Savkin, A. (2000). Qualitative

where any effective impulsive control steers the system Theory of Hybrid Dynamical Systems Boston
directly to a given closed sef, . Then constraint (15) Birkhauser ’

should be replaced with the following one: Miller, B. and Bentsman, J. (2006). Optimal Control
Problems in Hybrid Systems with Active Singulari-
(t,z(t),V(t)) € Z4 |dul-a.e.on[0,T]. (30) ties. Nonlinear Analysis65, pp. 999-1017.
Miller, B. and Rubinovich, E. (2003)Impulsive Con-
As distinct from (15), the condition is formulated in trolin antinuous and Di_screte—Continuous Systems.
terms of the right limits of a trajectory at discontinu-  (Foundations of the hybrid systems theoriuwer
ity points. In a certain sense, this problem is a coun- _Academic/Plenum Publishers, New York. -
terpart of (P). In a similar way, we can reduce the Perelra,_F. a_nd Silva, G. (2000). Necessgry Conditions
problem to problentR P), where phase constraint (24) of Optimality for Vector-Valued Impulsive Control
is written in the form of an opposite inequality. No- _ProblemsSystems Control Letterd0, pp. 205-215.
tice that Theorems 1-3 remain valid. Thus, the reduc- Sanfelice, R., Goebel, R., Teel, A., Hespanha, J. and
tion proposed is also applicable to the counter problem. Tiwari, A (2006). A Feedback Control Motivation
The respective Maximum Principle is easily obtained for Generalized Solutions to Hybrid Systems. In
by employing the developed technique. Such a kind HSCC(2006), LNCS3927 pp. 522-536. _
of problems is typical for optimization in mechanical Silva, G. and Vinter, R. (1997). Necessary Condi-
systems with blockable degrees of freedom [Yunt and tions for Optimal Impulsive Control ProblemSIAM
Glocker, 2006]. We have, in fact, more general results 9-Control and Optim.35, pp. 1829-1846.
to be published elsewhere. The results are obtained forVan der Schaft, A. and Schumacher, H. (200@) In-

a problem under both constraints (15) and (30). troduction to Hybrid Dynamical SystemSpringer—
Verlag London Ltd.
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