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Abstract
A discontinuous controller for tracking feasible trajec-

tories in 2 degrees-of-freedom underactuated manipu-
lators is proposed. The controller is designed as an
extension to the underactuated case of the computed
torque control approach with a PD-type controller. Pro-
vided some conditions were satisfied, the proposal en-
sures stability of the closed-loop system, and allows
to track, simultaneously for all the system variables,
feasible trajectories to reach static and non-static con-
figurations under relatively large drifts in initial condi-
tions.The effectiveness of the proposal is illustrated by
means of simulations in two underactuated manipula-
tors with different characteristics.
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1 Introduction
Underactuated mechanical systems (UMS) refer to

those mechanical systems with less control inputs than
degrees-of-freedom (DOF) [Jiang, 2011]. A general
class of UMS does not satisfy the necessary Brock-
ett’s condition, which translates into the incapability
of designing a continuous time-invariant feedback con-
trol law for stabilization or tracking [Reyhanoglu et
al., 1999]. For this reason, alternative control ap-
proaches have been proposed for these systems, like
time-varying, oscillatory, delayed, structural-variable,
or adaptive control laws (see e.g. [Morin and Samson,
1997], [Hong, 2002], [Olgac and Cavdaroglu, 2011],
[Ngo and Hong, 2012], and references therein).
Analysis and control of UMS are interesting and chal-

lenging problems due to the clear reduction of the con-
trol space, and the inherent constraints in their dy-
namics, which do not allow the system to track an ar-

bitrary motion. The dynamic constraints are usually
non-holonomic, and can depend on position and veloc-
ity terms. In this case, they are known as first-order,
non-holonomic constraints (FONHC). They can also
be a function of position, velocity, and acceleration,
in which case are called second-order, non-holonomic
constraints (SONHC) [Oriolo and Nakamura, 1991].
FONHC appear in kinematic models of wheeled mo-
bile robots and wheeled vehicles, while SONHC ap-
pear in dynamic models of underwater vehicles, space
robots, and underactuated manipulators.
Some important problems for UMS include stabiliza-

tion around an equillibrium point or a manifold of
equilibria (see e.g. [Oriolo and Nakamura, 1991],
[Spong, 2002], [Fantoni and Lozano, 2002], [Olfati-
Saber, 2001], [Grizzle et al., 2005], and references
therein), trajectory generation or motion planning (see.
e.g. [Nagaragan et al., 2009], and [Miranda, 2011]),
and trajectory tracking, which has been mainly investi-
gated for UMS with FONHC.
There are some works where the trajectory tracking

problem for specific UMS with SONHC has been stud-
ied. In [Berkemeier and Fearing, 1999], the tracking
control of fast inverted periodic motions for the Ac-
robot is considered. In [Begovich et al., 2002], a fuzzy
control scheme is proposed for tracking inverted tra-
jectories in the Pendubot. In [Andary et al., 2012],
stable limit cycles are achieved for an inertia wheel
pendulum by designing a family of parametrized peri-
odic trajectories, and proposing a control scheme based
on the model-free approach. Sliding mode control has
been used for trajectory tracking in the inverted pen-
dulum [Wang, 2012], and in an underactuated surface
vessel [Yu et al., 2012]. In [White et al., 2009], a di-
rect Lyapunov method is applied, and a sliding mode
controller is proposed, which involves the solution of
the so-called matching equations, as in [Liao and Hou,
2012], where a tracking controller is designed based on
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controlled lagrangians. In [Zilic et al., 2012], discon-
tinuous control is used for simultaneous stabilization
and tracking considering actuator dynamics. In these
works, the research has been mainly focused on un-
deractuated systems with an specific application inter-
est, and the proposed methodologies and control ap-
proaches cannot be applied to different underactuated
devices. In addition, asymptotic stabilization of the
tracking errors are not guaranteed in general, and the
system is forced to start very close to (or on) the refer-
ence trajectory.
In this paper, the trajectory tracking problem for un-

deractuated manipulators (i.e. UMS with SONHC
[Oriolo and Nakamura, 1991]) is analysed. A dis-
continuous controller is proposed to track, simultane-
ously for all the system variables, feasible trajectories
to reach static or non-static configurations. The key
idea behind our approach is the introduction of a cou-
pling matrix which permits to propose a control struc-
ture, and is relatively simple because it is based on
an inverse dynamics approach plus a class of PD con-
troller; moreover, it has been designed to obtain a stable
closed-loop error dynamics. Provided some conditions
were satisfied, the proposed controller ensures expo-
nential convergence of the tracking errors to a small
neighbourhood around zero, even under large drifts in
initial conditions. Furthermore, provided that feasible
trajectories to be tracked were available, the proposed
control structure can be applied directly to underac-
tuated manipulators either class-I or class-II (see the
definition of these classes in section 2.1). In addition,
since our controller does not require to solve on-line
the so-called matching equations [White et al., 2009],
[Liao and Hou, 2012], the computational cost of the
implementation is reduced. Simulation results are pro-
vided to show the effectiveness of the proposed control
scheme.

2 Problem Formulation
2.1 Underactuated Dynamics and Properties
Let us consider underactuated manipulators with 2-

DOF (one-degree of actuation, and one-degree of un-
deractuation), described by the nonlinear matrix equa-
tion

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

where q is the generalized coordinate vector, M(q) is
the inertia matrix, C(q, q̇)q̇ is the vector of Coriolis and
centrifugal forces, G(q) is the vector of gravitational
forces obtained as the gradient of the potential energy,
B is a distribution vector, and u is the control input.
All matrices and vectors are defined with appropriate
dimensions.
Two classes of underactuated manipulators are de-

fined with respect to B [Zikmund and Moog, 2006].
It is said that the underactuated dynamics is class-I if
B = [0 1 ]⊤, while it is class-II if B = [1 0 ]⊤. In

both cases, the dynamics (1) has a SONHC denoted by
N(q, q̇, q̈) = 0.
In addition, the underactuated dynamics (1) has the

following properties [Spong, 2006].

Property 1. The inertia matrix, and its inverse, are
symmetric, and positive definite for all q. For some
positive constants, µ

M
≤ µM , and µ

I
≤ µI , both

matrices are lower and upper bounded for all q as
µ
M

≤ ||M(q)|| ≤ µM , and µ
I
≤ ||

(
M(q)

)−1|| ≤ µI .

Property 2. The vector C(q, q̇)q̇ satisfies
||C(q, q̇)q̇|| ≤ c0||q̇||2, for all q, q̇, and a posi-
tive constant c0.

Property 3. For revolute joints, the vector G(q) sat-
isfies ||G(q)|| ≤ g0, for all q, and a positive constant
g0.

2.2 Feasible Trajectories
A SONHC appears due to the reduction of the input

space, and this translates into the incapability of the
system to track an arbitrary motion. Then, it is required
to calculate a set of ‘feasible trajectories’ to be tracked,
that is, reference motions which satisfy N(q, q̇, q̈) = 0.
So,

Q = {qr(t) : N(qr, q̇r, q̈r) = 0} t ≥ t0 (2)

will denote the set of all feasible trajectories of (1),
which will be sufficiently smooth, and bounded for all
t. For our purposes, it will be assumed that there is
available a set of feasible trajectories to be tracked.
Some algorithms for planning such feasible trajectories
can be found in [Nagaragan et al., 2009], [White et al.,
2009], and [Miranda, 2011].

2.3 Problem Statement
The problem analysed in this paper can be formulated

as follows. Given the underactuated manipulator mod-
elled by (1), which satisfies properties 1 to 3, design, if
possible, a control law u to achieve the objective

lim
t→∞

||q(t)− qr(t)|| ≤ ϵ, (3)

for a sufficiently small non-negative constant ϵ ≥ 0,
and a desired feasible trajectory qr ∈ Q.

3 Control Scheme
Define the tracking errors

q̃ = q − qr, ˙̃q = q̇ − q̇r, ¨̃q = q̈ − q̈r, (4)

and consider the control law

Bu = M(q)
(
v + q̈r +

(
M(q)

)−1
C(q, q̇)q̇ +G(q)

)
,

(5)
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where v is an auxiliary control input yet to be defined.
Then, putting (5) in (1), the following ideal error dy-
namics is obtained

¨̃q = v, (6)

where v can be designed to drive q̃ to the origin, solving
the tracking problem. However, the control law cannot
be calculated from (5) because B is not a square invert-
ible matrix.
At this point, let us define the coupling matrix

D(q) =
(
M(q)

)−1
BBM(q), (7)

which will play an important role in the definition of the
control scheme. It should be noted that this matrix, for
any q, is lower and upper bounded, because of Property
1. Then, for some positive constants µ

D
≤ µD, we

have that µ
D

≤ ||D(q)|| ≤ µD.
After solving explicitly for u in (5), one has

u = BM(q)
[
v + q̈r +

(
M(q)

)−1(
C(q, q̇)q̇ +G(q)

)]
,

(8)
where B is the Moore-Penrose pseudo-inverse of B,
given by

B = (B⊤B)−1B⊤. (9)

Following with (8) and (1), and after some algebraic
manipulations, one obtains the error dynamics

¨̃q = D(q)v + [D(q)− I]
[
q̈r +

(
M(q)

)−1×(
C(q, q̇)q̇ +G(q)

)]
,

(10)

that contains, in the second term of the right-hand side,
various residual terms due to the model simplification
made so far, and it can be seen as a disturbance of the
ideal relation (6). Note that the second term of the
right-hand side satisfies the matching condition [Khalil,
2002], and this opens the possibility to cancel its (un-
desirable) effects in the system through v.

Remark 1. For underactuated devices, D(q) can be
seen as a matrix which couples the residual non-linear
dynamics that contains the SONHC with the error con-
figuration vector ¨̃q. This observation can be used to
extend some control schemes designed for completely
actuated systems, to the underactuated case. Note that,
if the device were fully-actuated, the matrix D(q) ≡ I ,
and the ideal relation (6) is recovered from (10).

Now the tracking problem can be solved if it is possi-
ble to stabilize (10). To this end, we establish the next
result.

Theorem 1. The dynamics (10), obtained after substi-
tuting (8) in (1), can be stabilized around the origin
with the control law

v = ϕ+ ω, (11)

where

ϕ = −(γ + α) ˙̃q − αγq̃ = −γ ˙̃q − αs, (12)

ω =

{
−η z

||z|| if ||z|| ̸= 0

0 if ||z|| = 0
(13)

s(q̃, ˙̃q) = ˙̃q + γq̃, (14)

z = D⊤s, (15)

for some positive constants γ, α, and η satisfying

η ≥ ||δ||
µ
D

, (16)

with

δ =
[
D(q)− I

][
q̈r +

(
M(q)

)−1(
C(q, q̇)q̇ +G(q)

)
−(γ + α) ˙̃q − αγq̃

]
.

(17)

Proof. Putting the control (11), (12), and (13), in (10),
the closed-loop error dynamics is described by

ṡ = −αs+Dω + δ, (18)

where δ is given in (17), and represents the vector of
residual dynamics, which satisfies

||δ|| ≤ µD

(
||q̈r||+ µI(c0|| ˙̃q + q̇r||2 + g0)

+(γ + α)|| ˙̃q||+ αγ||q̃||
)
.

(19)

To drive (18) to the origin, ω has been designed to
cancel the effects of δ out. System (18) is considered
as a perturbation of the nominal system

ṡ = −αs, (20)

being s = 0 its globally exponentially stable equilib-
rium point. This is concluded from Theorem 4.10 in
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[Khalil, 2002], after taking the time derivative of the
Lyapunov function

V (s) =
1

2
s⊤s, (21)

along the trajectories of (20).
For the perturbed system, the derivative of (21) along

(18) is

V̇ (s) = −α||s||2 + s⊤Dω + s⊤δ, (22)

which, after taking ω as in (13), with (15), turns into

V̇ (s) = −α||s||2 + z⊤
(
−η

z

||z||

)
+ s⊤δ

= −α||s||2 − η||z||+ s⊤δ

≤ −α||s||2 −
(
ηµ

D
− ||δ||

)
||s||. (23)

With the gain η chosen as in (16), it follows that V̇ (s) is
negative definite whenever z ̸= 0. Therefore, ∀ t ≥ t0

s(t) = s(t0)e
−α(t−t0), (24)

and

q̃(t) = q̃(t0)e
−γ(t−t0) +

s(t0)

γ − α
e−α(t−t0), (25)

satisfying (3).

Remark 2. The previous result allows exponential sta-
bilization of the tracking errors whenever ||z|| ̸= 0.
However, there might be some circumstances for which
||z|| = 0, and as a consequence, the auxiliary con-
trol ω will not be available to cancel δ out. Under this
scenario, two different cases are possible: either s is
exactly zero (and then q̃ = 0 is ES), or s ̸= 0, in which
case it can be proved that ||s|| is uniformly ultimately
bounded, and so the tracking errors. These cases are
described below.

- In case ||z|| = 0, with ||s|| = 0, one has that
s ≡ 0, and from (14), one has

q̃(t) = q̃(t0)e
−γ(t−t0) ∀ t ≥ t0, (26)

which proves that (3) is satisfied.
- In case ||z|| = 0, with ||s|| ̸= 0, one has that
V̇ (s) along the trajectories of (18) is

V̇ (s) ≤ −α||s||2 + ||δ|| · ||s||, (27)

which is negative for all s, such that

||s|| > ||δ||
α

:= b. (28)

That is, if ||s|| > b, then V̇ (s) is negative definite,
and s decreases until the bound relation ||s|| ≤ b
is satisfied for a finite time T . This states that s is
uniformly ultimately bounded. After using Lemma
9.2 in [Khalil, 2002], the solution of the perturbed
system satisfies

||s(t)|| ≤ b ∀ t ≥ t0 + T, (29)

which for the tracking errors is written as in (25),
for t0 ≤ t ≤ t0 + T , and

||q̃(t)|| ≤ ϵ ∀ t ≥ t0 + T. (30)

Then (3) is satisfied.

Remark 3. As described, whenever ω is not avail-
able to compensate δ, exponential stabilization of the
tracking errors is not guaranteed. In this situation,
as proved, tracking is achieved with bounded errors,
which will depend on initial conditions. Then the
smaller drift in initial conditions, the better tracking
performance.

Remark 4. If some terms of unmodeled dynamics and
parametric uncertainties can be put into δ, the pro-
posed controller would only need an estimation of their
maximal bounds to compensate their undesirable ef-
fects in the system. This could include some robustness
characteristics to the proposal.

4 Simulations
The aim of this section is to show the effectiveness

of the proposed result by means of simulations in two
different underactuated manipulators, a class-I and a
class-II.

4.1 The Acrobot
First, we have considered the Acrobot, an underactu-

ated manipulator class-I, shown in Figure 1. Its dynam-
ics can be written in the form of (1) as follows

[
a1 + a2 − 2a3C2 a2 − a3C2

a2 − a3C2 a2

]
︸ ︷︷ ︸

M(q)

[
q̈1
q̈2

]
︸ ︷︷ ︸

q̈

+

[
2a3q̇1q̇2S2 + a3q̇

2
2S2

−a3q̇
2
1S2

]
︸ ︷︷ ︸

C(q,q̇)q̇

+

[
−a4S1 + a5S12

a5S12

]
︸ ︷︷ ︸

G(q)

=

[
0
1

]
︸︷︷︸
B

u,

(31)
where q1 denotes the non-actuated link, while q2 de-
notes the actuated one. Also, the following notations
are used C2 = cos(q2), S1 = sin(q1), S2 = sin(q2),
and S12 = sin(q1 + q2).
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Figure 1. Diagram of the Acrobot (class-I).

The system parameters are lumped in ai, i ∈
{1, . . . , 5}, with values taken from [Berkemeier and
Fearing, 1999]

a1 = m1l
2
c1 +m2l

2
1 + I1 = 0.0043 kg·m2

a2 = m2l
2
c2 + I2 = 0.00506 kg·m2

a3 = m2l1lc2 = 0.0338 kg·m2

a4 = (m1lc1 +m2l1)g = 0.0493 N·m
a5 = m2glc2 = 0.0379 N·m

 (32)

4.1.1 Feasible Trajectories The desired trajecto-
ries to be tracked involve inverted periodic motions.
These trajectories, denoted by qr, were proposed in
[Berkemeier and Fearing, 1999], and are solutions of
the Acrobot’s equation of motion

M(qr)q̈r + C(qr, q̇r)q̇r +G(qr) = Bu. (33)

In this case, the input

u =
(
E
(
M(qr)

)−1
B
)−1

E
(
M(qr)

)−1×(
C(qr, q̇r)q̇r +G(qr)

)
,

(34)

with E = −[ 2 1 ], makes the virtual output

yr(t) = 2qr1(t) + qr2(t)− ϕ (35)

to remain at zero for all t ≥ t0, and with the ini-
tial conditions yr(t0) = ẏr(t0) = 0. The constant ϕ
parametrizes the equilibrium manifold of the Acrobot,
and the inverted periodic motions occur when ϕ = π.
Then, (33) and (34) generate the exact periodic trajec-

tories given by

q̈r1 =
a4 sin(qr1) + a5 sin(ϕ− qr1)

a1 − a2
, (36)

which can be interpreted as the zero dynamics of the
system (33) with respect to the output (35) [Berkemeier
and Fearing, 1999].
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Figure 2. Diagram of the underactuated manipulator (class-II).

4.1.2 Results Numerical simulations were carried
out in Matlab/Simulink using the Euler integration
method with fixed-step size of 1ms. Drifts in initial
conditions were considered for the Acrobot’s positions
with respect to the feasible trajectories; these were of
0.2 rad (≈ 11.5 deg) for the non-actuated link, and 0.4
rad (≈ 23 deg) for the actuated link. Also, the control
parameters were set to γ = 30, and α = 15.
The simulation results are shown in Figure 3, where it

can be seen that the Acrobot’s positions simultaneously
track the desired trajectories with good performance.
In the graphics, the tracking errors exponentially con-
verge to a small neighbourhood around the origin after
0.5s. At that time, chattering in the control signal is
displayed due to the switching activity of the discon-
tinuous term w, which do try to keep the error signals
to not leave the neighbourhood. Then, the proposed
controller allows to satisfy (3).

4.2 An Underactuated Planar Manipulator
The 2-DOF underactuated manipulator shown in Fig-

ure 2 is the other system considered. This corresponds
to the class-II, and it can be viewed as the Pendubot
[Spong, 1995] without gravity. The absence of grav-
ity terms allows the system to have many equilibrium
configurations for position control. Its dynamics is de-
scribed in the form of (1) as[

a1 + 2a2 cos(qu) a3 + a2 cos(qu)
a3 + a2 cos(qu) a3

]
︸ ︷︷ ︸

M(q)

[
q̈a
q̈u

]
︸ ︷︷ ︸

q̈

+

[
−a2 sin(qu)(2q̇aq̇u + q̇2u)

a2q̇
2
aSu

]
︸ ︷︷ ︸

C(q,q̇)q̇

=

[
1
0

]
︸︷︷︸
B

u,
(37)

where qa denotes the actuated link, and qu the non-
actuated link. The system parameters are lumped in the
coefficients a1, a2, and a3. Their values correspond
to those of the physical device in [Spong, 1995], and
are a1 = 0.05653 kg· m2, a2 = 0.01081 kg· m2, and
a3 = 0.01341 kg· m2.

4.2.1 Feasible Trajectories Following [Nagara-
gan et al., 2009], some feasible trajectories to reach
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Table 1. Parameters used to generate the feasible trajectories.

Case
(
qa0 , qu0

) (
qaf , quf

)
α1 [rad] α2 [rad]

T1 (−π
6
, π
6
) (0, 0) −0.3189 −0.3775

T2 (0, 0) (0, π
2
) −0.6204 0.9552

desired static configurations in finite time tf are pro-
posed from the set of equations

qa(t) = qa0 +
1
2 (qaf

− qa0)(1 + tanh(a4t− a4a5))
+ α1

cosh(a6t−a7)
− α2

cosh(a8t−a9)
,

(38)

q̇a(t) =
1
2a4(qaf

−qa0 )

cosh2(a4t−a4a5)
− a6α1 sinh(a6t−a7)

cosh2(a6t−a7)

+a8α2 sinh(a8t−a9)
cosh2(a8t−a9)

,
(39)

q̈a(t) = −a2
4(qaf

−qa0 ) sinh(a4t−a4a5)

cosh3(a4t−a4a5)
− a2

6α1

cosh3(a6t−a7)

+
a2
6α1 sinh2(a6t−a7)

cosh3(a6t−a7)
+

a2
8α2

cosh3(a8t−a9)

−a2
8α2 sinh2(a8t−a9)

cosh3(a8t−a9)
,

(40)

q̈u(t) = − 1

a3

(
(a3 + a2 cos(qu))q̈a + a2q̇

2
a sin(qu)

)
,

(41)

a4 = 8
tf−t0

, a5 =
t0+tf

2 , a6 = 18
tm−t0

,

a7 = 9(t0+tm)
tm−t0

, a8 = 18
tf−tm

, a9 =
9(tm+tf )
tf−tm

,

for t ∈ [t0, tf ].
Two feasible trajectories were generated to reach two

different static configurations. These are named T1 and
T2, and their parameters are given in Table 1.

4.2.2 Results Simulations were carried out in
Matlab/Simulink, using an Euler integration method
with fixed-step size of 1ms. A feasible trajectory was
used with the set of parameters T1, from 0s to 5s, and
with T2 from 5s to 10s. This was the desired reference
to be tracked by the manipulator under the action of the
proposed control scheme. The selected control param-
eters were γ = 7, and α = 25. To show the robustness
of the proposed controller, viscous friction is included
in the manipulator joints (0.005q̇a, 0.005q̇u), while the
controller is not fed with this information. In this case,
friction is considered as a perturbation, whose undesir-
able effects must be compensated by the controller (and
in particular, by ω). The simulation results are shown
in Figure 4, where it can be seen that the tracking ob-
jective (3) is satisfied with small bounded errors, even
in the presence of drifts in initial conditions. However,
it should be noted that this is achieved with a major ef-
fort, which is manifested in the plot of the control sig-
nal, through the appearing of high frequency switching.

5 Conclusions
A discontinuous control scheme was proposed to track

feasible trajectories for 2-DOF underactuated manipu-
lators, class-I and class-II. The proposal ensures ulti-
mate boundedness of the solution of the closed-loop
system dynamics, and allows to track feasible trajecto-
ries under drifts in initial conditions. Numerical simu-
lations in two different underactuated manipulators ver-
ified the effectiveness of the proposed controller.
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Figure 3. Simulation results for the Acrobot: tracking inverted pe-
riodic motions. From top to bottom: graphics of positions for non-
actuated and actuated joints, graphic of position errors, and graphic
of control signal.
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Figure 4. Simulation results for the 2-DOF underactuated manipu-
lator with viscous friction. From top to bottom: graphics of positions
for actuated and non-actuated joints, graphic of position errors, and
graphic of control signal.


