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Abstract
We carry out the global bifurcation analysis of the

Kukles system representing a planar polynomial dy-
namical system with arbitrary linear and cubic right-
hand sides and having an anti-saddle at the origin. Us-
ing the Wintner–Perko termination principle of multi-
ple limit cycles, we solve the problem on the maximum
number and distribution of limit cycles in this system.
Numerical experiments are done to illustrate the ob-
tained results.
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1 Introduction
In this paper, we continue studying the Kukles cubic

system
ẋ = y,

ẏ = −x+ δy + a1x
2 + a2xy + a3y

2

+ a4x
3 + a5x

2y + a6xy
2 + a7y

3.

(1)

I. S. Kukles was the first who began to study (1) solving
the center-focus problem for this system in 1944: he
gave the necessary and sufficient conditions forO(0, 0)
to be a center for (1) with a7 = 0 [Kukles, 1944]. Later,
system (1) was studied by many mathematicians. In
[Lloyd and Pearson, 1992], for example, the necessary
and sufficient center conditions for arbitrary system (1),
when a7 6= 0, were conjectured. In [Rousseau et al.,
1995], global qualitative pictures and bifurcation dia-
grams of a reduced Kukles system (a7 = 0) with a
center were given. In [Wu at al., 1999], the global ana-
lysis of system (1) with two weak foci was carried out.

In [Ye and Ye, 2001], the number of singular points un-
der the conditions of a center or a weak focus for (1)
was investigated. In [Zang at al., 2008], new distri-
butions of limit cycle for the Kukles system were ob-
tained. In [Robanal, 2014], an accurate bound of the
maximum number of limit cycles in a class of Kukles
type systems was provided.
A new impulse to the study of limit cycles was given

by ideas and methods from bifurcation theory; see
[Gaiko, 2003].
There are three principal bifurcations of limit cycles.
1) The Andronov–Hopf bifurcation from a singular

point of the center or focus type (Figure 1).

Figure 1. The Andronov–Hopf bifurcation.

2) The separatrix cycle bifurcation from a singular
closed trajectory (Figure 2).

Figure 2. The separatrix cycle bifurcation.

3) The multiple limit cycle bifurcation (Figure 3).

Figure 3. The multiple limit cycle bifurcation.
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The first bifurcation has been studied completely only
for quadratic systems: N. N. Bautin has proved that the
maximum number of limit cycles appearing from a sin-
gular point under quadratic perturbations is equal to
three (this number is called the cyclicity of a singu-
lar point). For cubic systems, as has been shown by
H. Żoła̧dek, the cyclicity of a singular point is at least
eleven. The second bifurcation has been intensive-
ly studying by F. Dumortier, R. Roussarie, C. Rousseau
and other mathematicians. Now we have a classifica-
tion of separatrix cycles and know the cyclicity of the
most of them. The last bifurcation is the most compli-
cated. Multiple limit cycles have been considered, for
instance, by L. M. Perko.
Unfortunately, all these bifurcations of limit cycle are

local bifurcations: we consider only a sufficiently small
neighborhood of either a singular point or a separatrix
cycle, or a multiple limit cycle and the corresponding
sufficiently small neighborhood of the parameter space.
To complete the study of limit cycles, it requires

a qualitative investigation on the whole (both on the
whole phase plane and on the whole parameter space),
i. e., it requires a global bifurcation theory. This idea
was introduced for the first time by N. P. Erugin. Then,
we have to understand how to control the limit cy-
cle bifurcations. The best way to do it is to use field
rotation parameters, the possibility of application of
which for the study of limit cycles was substantiated
by G. F. D. Duff. And finally, we should connect all
limit cycle bifurcations. This idea came from theory
of higher-dimensional dynamical systems, being the
essence of Wintner’s principle of natural termination,
and it was later used by L. M. Perko for the study of
the global behavior of multiple limit cycles in the two-
dimensional case. See [Gaiko, 2003] for more detail.
In [Gaiko and van Horssen, 2004], we constructed a

canonical cubic dynamical system of Kukles type and
carried out the global qualitative analysis of a special
case of the Kukles system corresponding to a general-
ized cubic Liénard equation. In particular, it was shown
that the foci of such a Liénard system could be at most
of second order and that such system could have at
most three limit cycles in the whole phase plane. More-
over, unlike all previous works on the Kukles type sys-
tems, global bifurcations of limit and separatrix cycles
using arbitrary (including as large as possible) field ro-
tation parameters of the canonical system were studied.
As a result, a classification of all possible types of sep-
aratrix cycles for the generalized cubic Liénard system
was obtained and all possible distributions of its limit
cycles were found.
In [Gaiko, 2003; Gaiko, 2008], we also presented a

solution of Hilbert’s sixteenth problem in the quadratic
case of polynomial systems proving that for quadratic
systems four is really the maximum number of limit
cycles and (3 : 1) is their only possible distribu-
tion. We established some preliminary results on gene-

ralizing our ideas and methods to special cubic, quar-
tic and other polynomial dynamical systems as well.
In [Gaiko, 2012a], e. g., we presented a solution of
Smale’s thirteenth problem [Smale, 1998] proving that
the classical Liénard system with a polynomial of de-
gree 2k + 1 could have at most k limit cycles and
we could conclude that our results agree with the con-
jecture of [Lins et al., 1977] on the maximum num-
ber of limit cycles for the classical Liénard polynomial
system. In [Gaiko, 2012b], under some assumptions
on the parameters, we found the maximum number of
limit cycles and their possible distribution for the gen-
eral Liénard polynomial system. In [Gaiko, 2011], we
studied multiple limit cycle bifurcations in the well-
known FitzHugh–Nagumo neuronal model. In [Broer
and Gaiko, 2010; Gaiko, 2016], we completed the
global qualitative analysis of quartic dynamical sys-
tems which model the dynamics of the populations of
predators and their prey in a given ecological system.

System (1) can be considered as a generalized Liénard
cubic system. There are many examples in the natural
sciences and technology in which such and related sys-
tems are applied; see [Gaiko, 2012b]. Such systems
are often used to model either mechanical or electri-
cal, or biomedical systems, and in the literature, many
systems are transformed into Liénard type to aid in
the investigations. They can be used, e. g., in certain
mechanical systems with damping and restoring (stiff-
ness), when modeling wind rock phenomena and surge
in jet engines. Such systems can be also used to model
resistor-inductor-capacitor circuits with non-linear cir-
cuit elements. Recently, e. g., a Liénard system has
been shown to describe the operation of an optoelec-
tronics circuit that uses a resonant tunnelling diode to
drive a laser diode to make an optoelectronic voltage
controlled oscillator. There are also some examples of
using Liénard type systems in ecology and epidemiol-
ogy [Gaiko, 2012b]. To control natural processes oc-
curring in such systems, especially related to periodic-
ity and oscillations, we use so-called field rotation pa-
rameter; see [Gaiko, 2003].

In this paper, we will use the obtained results and our
bifurcational geometric approach for studying limit cy-
cle bifurcations of Kukles cubic system (1). In Sec-
tion 2, we construct new canonical systems with field
rotation parameters for studying global bifurcations of
limit cycles of (1). In Section 3, using the Wintner–
Perko termination principle of multiple limit cycles, we
give a solution of the problem on the maximum number
and distribution of limit cycles for Kukles system (1).
This is related to the solution of Hilbert’s sixteenth
problem on the maximum number and distribution of
limit cycles in planar polynomial dynamical systems
[Gaiko, 2003]. Numerical experiments are also done to
illustrate the theoretical results.
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2 Canonical Systems
Applying Erugin’s two-isocline method [Gaiko, 2003]

and studying the rotation properties [Bautin and Leon-
tovich, 1990; Gaiko, 2003; Perko, 2002] of all parame-
ters of (1), we prove the following theorem.

Theorem 2.1. Kukles system (1) with limit cycles can
be reduced to the canonical form

ẋ = y ≡ P (x, y),

ẏ = q(x)+(α0 − β + γ + β x+ α2 x
2) y

+ (c+ dx) y2 + γ y3 ≡ Q(x, y),

(2)

where
1) q(x) = −x+(1+1/a)x2−(1/a)x3, a = ±1,±2

or
2) q(x) = −x+ b x3, b = 0,−1,

or
3) q(x) = −x+ x2;
α0, α2, γ are field rotation parameters and β is a semi-
rotation parameter.

Proof. System (1) has two basic isoclines: the cubic
curve

−x+ δy + a1x
2 + a2xy + a3y

2

+ a4x
3 + a5x

2y + a6xy
2 + a7y

3 = 0

as the isocline of “zero” and the straight line y = 0 as
the isocline of “infinity”.
These isoclines intersect at least at one point: at the

origin which is an anti-saddle (a center, a focus or a
node). Besides, (1) can have two more finite singulari-
ties (two saddles or a saddle and an anti-saddle) or one
additional finite singular point (a saddle or a saddle-
node), or no other finite singularities at all. All these
singular points lie on the x-axis (y = 0), and their co-
ordinates are defined by the equation

q(x) ≡ −x+ a1x
2 + a4x

3 = 0 (3)

depending just on the parameters a1 and a4.
Without loss of generality, q(x) as given by (3) can be

written in the following forms:
1) q(x) ≡ −(1/a)x(x−1)(x−a)
= −x+(1+1/a)x2−(1/a)x3, a = ±1,±2 or
2) q(x) ≡ −x(1− bx2) = −x+ b x3, b = 0,−1, or
3) q(x) ≡ −x(1− x) = −x+ x2.
It means that, together with the anti-saddle in (0, 0),

we can have also:
1) two saddles: at (1, 0) and (−2, 0) for a = −2 or at

(1, 0) and (−1, 0) for a = −1; or a saddle at (1, 0) and
an anti-saddle at (2, 0) for a = 2; or a saddle-node at
(1, 0) for a = 1;
2) no other finite singularities;
3) one saddle at (1, 0).
At infinity, system (1) has at most four singular points:

one of them is in the vertical direction and the others
are defined by the equation

a7u
3 + a6u

2 + a5u+ a4 = 0, u = y/x. (4)

Instead of the parameters δ, a2, a3, a5, a6, a7, also
without loss of generality, we can introduce some new
parameters c, d, α0, α2, β, γ :

δ = α0 − β + γ; a2 = β; a3 = c;

a5 = α2; a6 = d; a7 = γ

to have more regular rotation of the vector field
of (1) [Gaiko, 2003].
Then, taking into account q(x), equation (4) is written

in the form

γ u3 + d u2 + α2 u+ s = 0,

u = y/x, s = −1/a, b.

(5)

Thus, we have reduced (1) to canonical system (2).
If c = d = α0 = α2 = β = γ = 0, we obtain the

following Hamiltonian systems:

ẋ = y, ẏ = −x+ (1 + 1/a)x2 − (1/a)x3,

a = ±1,±2;

(6)

ẋ = y, ẏ = −x+ b x3, b = 0,−1; (7)

ẋ = y, ẏ = −x+ x2. (8)

All their vector fields are symmetric with respect to
the x-axis, and, besides, the fields of system (6) with
a = 2,−1 and system (7) with b = 0,−1 are symmet-
ric with respect to the straight line x = 1 and centrally
symmetric with respect to the point (1, 0). Systems (6)–
(8) have the following Hamiltonians, respectively:

H(x, y) = x2−(2/3) (1+1/a)x3+(1/(2a))x4+y2,

a = ±1,±2;

H(x, y) = x2 − (b/2)x4 + y2, b = 0,−1;

H(x, y) = x2 − (2/3)x3 + y2.

If α0 = α2 = β = γ = 0, we will have the system

ẋ = y, ẏ = q(x) + (c+ dx) y2 (9)

and the corresponding equation

dy

dx
=
q(x) + (c+ dx) y2

y
≡ F (x, y). (10)

Since F (x,−y) = −F (x, y), the direction field of (10)
(and the vector field of (9) as well) is symmetric with
respect to the x-axis. It follows that system (9) has
centers as anti-saddles and cannot have limit cycles
surrounding these points. Therefore, without loss of
generality, the parameters c and d in system (2) can be
fixed.
To prove that the parameters α0, α2, γ and β rotate

the vector field of (2), let us calculate the following de-
terminants:



198 CYBERNETICS AND PHYSICS, VOL. 6, NO. 4

∆α0
= P Q′

α0
−QP ′

α0
= y2 ≥ 0,

∆α2
= P Q′

α2
−QP ′

α2
= x2y2 ≥ 0,

∆γ = P Q′
γ −QP ′

γ = y2(1 + y2) ≥ 0,

∆β = P Q′
β −QP ′

β = (x− 1) y2.

By definition of a field rotation parameter [Bautin and
Leontovich, 1990; Gaiko, 2003], for increasing each
of the parameters α0, α2 and γ, under the fixed oth-
ers, the vector field of system (2) is rotated in positive
direction (counterclockwise) in the whole phase plane;
and, conversely, for decreasing each of these param-
eters, the vector field of (2) is rotated in negative di-
rection (clockwise). For increasing the parameter β,
under the fixed others, the vector field of system (2) is
rotated in positive direction (counterclockwise) in the
half-plane x > 1 and in negative direction (clockwise)
in the half-plane x < 1 and vice versa for decreasing
this parameter. We will call such a parameter as a semi-
rotation one.
Thus, for studying limit cycle bifurcations of (1), it is

sufficient to consider canonical system (2) containing
the field rotation parameters α0, α2, γ and the semi-
rotation parameter β. The theorem is proved. �

3 The Wintner–Perko Termination Principle
and Global Bifurcations of Limit Cycles

By means of our bifurcational geometric approach
[Gaiko and van Horssen, 2004; Gaiko, 2012a; Gaiko,
2012b; Gaiko, 2015; Gaiko, 2016], we will consider
now the Kukles cubic system in the form (when a=2):

ẋ = y,

ẏ = −(1/2)x(x− 1)(x− 2)

+ (α0 − β + γ + β x+ α2 x
2) y

+ (c+ dx) y2 + γ y3.

(11)

All other Kukles systems can be considered in a simi-
lar way.
In [Gaiko, 2003], the Wintner–Perko termination prin-

ciple which connects the main bifurcations of limit cy-
cles [Perko, 2002] was used for the global analysis of
limit cycle bifurcations. Let us formulate this principle
for the polynomial system

ẋ = f(x,µ), (12)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial
vector function).
Theorem 3.1 (Wintner–Perko termination prin-
ciple). Any one-parameter family of multiplicity-m
limit cycles of relatively prime polynomial system (12)
can be extended in a unique way to a maximal one-
parameter family of multiplicity-m limit cycles of (12)
which is either open or cyclic.

If it is open, then it terminates either as the param-
eter or the limit cycles become unbounded; or, the
family terminates either at a singular point of (12),
which is typically a fine focus of multiplicity m, or on
a (compound ) separatrix cycle of (12), which is also
typically of multiplicity m.

The proof of the Wintner–Perko termination principle
for general polynomial system (12) with a vector pa-
rameter µ ∈ Rn parallels the proof of the planar termi-
nation principle for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (13)

with a single parameter λ ∈ R; see [Gaiko, 2003;
Perko, 2002]. In particular, if λ is a field rotation pa-
rameter of (13), it is valid the following Perko’s theo-
rem on monotonic families of limit cycles.

Theorem 3.2. If L0 is a nonsingular multiple limit
cycle of (13) for λ = λ 0, then L0 belongs to a one-
parameter family of limit cycles of (13); furthermore:
1) if the multiplicity of L0 is odd, then the family

either expands or contracts monotonically as λ in-
creases through λ 0;
2) if the multiplicity of L0 is even, then L0 bifurcates

into a stable and an unstable limit cycle as λ varies
from λ 0 in one sense and L0 disappears as λ varies
from λ 0 in the opposite sense; i. e., there is a fold bi-
furcation at λ 0.

Using Theorems 3.1 and 3.2, we will prove the fol-
lowing theorem.

Theorem 3.3. There exists no system (1) having
a swallow-tail bifurcation surface of multiplicity-four
limit cycles in its parameter space. In other words, sys-
tem (1) cannot have either a multiplicity-four limit cy-
cle or four limit cycles around a singular point, and the
maximum multiplicity or the maximum number of limit
cycles surrounding a singular point is equal to three.
Moreover, system (1) can have at most four limit cycles
with their only possible (3 :1)-distribution.

Proof. The proof of this theorem is carried out by con-
tradiction. Consider canonical systems (11) with three
field rotation parameters α0, α2, γ and a semi-rotation
parameter β which is also a field rotation one in the
half-plane x < 1. Suppose this system has four limit
cycles around the origin O. Then we get into some do-
main bounded by three fold bifurcation surfaces form-
ing a swallow-tail bifurcation surface of multiplicity-
four limit cycles in the space of the field rotation para-
meters α0, α2, γ and β. Cf. Figure 4 [Gaiko, 2003].
The corresponding maximal one-parameter family of

multiplicity-four limit cycles cannot be cyclic, other-
wise there will be at least one point corresponding
to the limit cycle of multiplicity five (or even higher)
in the parameter space. Extending the bifurcation
curve of multiplicity-five limit cycles through this point
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and parameterizing the corresponding maximal one-
parameter family of multiplicity-five limit cycles by a
field-rotation parameter, according to Theorem 3.2, we
will obtain a monotonic curve which, by the Wintner–
Perko termination principle (Theorem 3.1), terminates
either at the origin or on some separatrix cycle sur-
rounding the origin. Since we know at least the cyclic-
ity of the singular point [Zang et al., 2008] which is
equal to three, we have got a contradiction with the ter-
mination principle stating that the multiplicity of limit
cycles cannot be higher than the multiplicity (cyclicity)
of the singular point in which they terminate. Cf. Fi-
gure 5 [Gaiko, 2003].

Figure 4. The swallow-tail bifurcation surface.

Figure 5. The bifurcation curve (one-parameter family)
of multiple limit cycles.

If the maximal one-parameter family of multiplicity-
four limit cycles is not cyclic, on the same principle
(Theorem 3.1), this again contradicts to the result of
[Zang et al., 2008] not admitting the multiplicity of
limit cycles higher than three. It follows that the maxi-

mum multiplicity or the maximum number of limit cy-
cles surrounding the origin is equal to three.
Consider other logical possibilities. For example, sup-

pose that system (11) has for α0 > 0, α2 < 0 and
β > 0 three limit cycles in the (2 : 1)-distribution: two
cycles around the point O and the only one around A.
Let us show impossibility of obtaining additional limit
cycles around the pointA by means of the parameter γ.
We can suppose that a semi-stable cycle appears around
A on increasing this parameter for γ > 0. Then, ap-
plying the Wintner–Perko termination principle (Theo-
rem 3.1), we can show that the corresponding maximal
one-parameter family of multiplicity-three limit cycles
parameterized by another field rotation parameter, e. g.,
α2, cannot terminate in the focus A, since it will be a
rough one for γ > 0. The only additional limit cycle in
system (11) can appear from the focus O for the set of
α0 > 0, α2 < 0, β > 0 and γ > 0, when γ = β − α0.
All other possibilities, concerning also big limit cy-

cles from infinity, can be considered in a similar way.
It follows that system (11) can have at most four limit
cycles and only in the (3 : 1)-distribution. The same
conclusion can be done for system (1). The theorem is
proved. �
We have done also numerical simulations supporting

our results based on a Runge-Kutta method using a so-
called function of limit cycles introduced in [Gaiko,
2003] which is a function of a field rotation parameter
depending on a coordinate of the limit cycle and apply-
ing a flow curvature method [Ginoux, 2009] and some
other numerical methods [Van ’t Wout et al., 2016;
Vuik et al., 2015].
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(2008). Limit cycles of the Kukles system. J. Dyn.
Control. Syst., 14, pp. 283–298.


