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Here we report on an application of simultaneous perturbation for stochastic approximation (SPSA) algorithm 

for filtering systematic noise (SN) in photoelectron spectra of solid state. In our analysis of the experimental 

data by means of SPSA algorithm we have used 50 photoelectron spectra where SN was introduced. We have 

found that the resulted SPSA-spectrum is in good agreement with the spectrum measured without SN. 

 

 

1. Introduction 

 

In many experiments physicists have to deal with the observation noise of unknown 

nature. Traditionally, the observed noise is assumed to be a mutual independent and zero-

mean. These assumptions are often hard to justify in practice and without them, the 

validity of many algorithms is questionable in physics applications. For example, it is 

known that the standard “least-squares method” or the “maximum likelihood method” [1] 

give wrong estimates if the observed noise has an “unknown-but-bounded” deterministic 

nature or it is a probabilistic “dependent” sequence. As an example let us consider 

photoemission (PE) experiment where systematic noise (SN) of unknown nature appears 

at some particular kinetic energies. Such noise can introduce additional spectral features 

that can not be expected from theoretical consideration of electronic structure of solid. 

Since this noise is not zero-mean it can not be eliminated by simple increasing of the 

number of scans in PE experiment. One of the effective ways to deal with such noise is 

using of so-called simultaneous perturbation stochastic approximation (SPSA) algorithm. 

Generally, we use simultaneous perturbation of control input in order to enrich output 
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information channel (PE intensity). 

In the present work we demonstrate for a first time application of SPSA algorithm to 

analysis of photoemission spectra which include an arbitrary noise. PE spectra of the 

W(110) surface were collected with two independent photon sources, one of which was 

used as a probe and second one  as a source of the noise. It was shown that the resulted 

spectrum after application of SPSA algorithm is in good agreement with the one 

measured without SN. On the basis of these results we conclude that application of SPSA 

algorithm can be useful for analysis of different experimental data (for example, 

photoelectron spectra). We can expect a wide application of this method for filtering out 

of systematic noises that can appear in different kind of measurement/experiments. 

The manuscript is organized as following: Chapter 2 is devoted to description of the 

general aspects of SPSA algorithm, Chapter 3 – description of experimental details and 

measurement procedure, in Chapter 4 the application of SPSA algorithm for analysis of 

PE spectra is presented. Chapter 5 summarizes obtained results. 

 

2. SPSA algorithm 

 

Suppose that the observation (registered by some device) signal follows the model:  

y vφθ= + . 

If the system is considered being steady-state (this mean that θ  is a constant value) in 

order to define the unknown value of the parameter θ the standard method is used when 

series of experiments are repeated and the measurements data are averaged as usual. 

However, this method is applicable only supposing the independence and centering of the 

observation noise series. When it is impossible to repeat measurements many times the 

value y resulted in experiment under high level observation noise practically gives no 

information respectively the real value of the parameter θ. Otherwise, a simple averaging 

of the observation data is not valid at presence of the SN of the observation model. It may 

seem strange, but one of the effective ways to remove the systematic noise effect is using 

of the randomized algorithms for active measurements proposed in [2-5].  Then for the 

observations{ }ny

 

relationships follow  
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, 1, 2,...
n n n

y v nφ θ= + =  , 

where v
1
,v

2
,... are the observation noises. Denote , 1,2,...

n n
M nφφ∆ = − =  as 

centralized outputs. Keeping in mind a statistical nature of the control actions { }nφ  

suppose they are a sequence of independent bounded random values with known nonzero 

mean value 0Mφ ≠ , positive bounded dispersion 
2 0φσ >  and bounded forth moment 

4

4M  [1]. The idea of the least mean squared method dated still from Gauss and 

Legendre, is based on averaging of n successive observation data multiplied by the 

corresponding values of the control actions. According to the strong large numbers law 

the sequence of estimates in scope of the usual mean squared method at presence of 

random independent observation noise with bounded statistical moments, 
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with the probability 1 to the value θ + 
2

v
M Mφ

φσ
, where Mφ is a mean 

value of the control actions. Consequently, at rather large number of observations and the 

 
Fig. 1. (a) Principal scheme of the experiment with using SPSA algorithm for eliminating noises of 

unknown nature; (b) Scheme of the photoemission experiment where sample (1) is illuminated by two 

light sources, He IIα and Al Kα, electrons are analysed by photoelectron spectrometer (2) and detector 

(3) register signal yk. 
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known value M
v 

the problem on the determination of the value θ is solved. If the value 

M
v 

is unknown or the sequence of the observation noises is unknown and probably not 

random the classical algorithm is not valid. Multiplying by centralized outputs 
n

∆  both 

parts of the relationship determining the observations, after some simple manipulation 

one can get  

2

n n n n n ny M vφθ θ∆ = ∆ + ∆ + ∆  

Summarizing and averaging the first N observations results  

21 1 1
( )

n n n n n n
y M v

N N N
φθ θ∆ = ∆ + ∆ + ∆  

The fist and the second terms in the right-hand part under the adopted suppositions 

according to the strong large number law, at n → ∞
 

with probability 1 tend to 
2

φθσ
 

and 

zero, correspondingly. It can be shown in the same way that the last member at n → ∞  

tends to zero. From there it follows that at 1 Mφφ ≠
 
the sequence of estimations{ }ˆ

n
θ , 

formed by the rule  
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 with probability 1 to θ.  

Now let us consider the linear regression model  

T n

n n n
y vφ θ= + , 

n n
wθ θ= + , n = 1,2,…  (1) 

with outputs (observations) 
n

y ∈ℝ  and inputs 
n

φ ∈ℝ  and noises 
r

n
v ∈ℝ , 

n
w ∈ℝ  

(linearly dependent noise). Therefore we want to estimate θ  using the observations 

, , 1,2,...
n n

y nφ =  .  

Note that this conditions are different from those in standard assumption in the task of 

estimating the parameters of linear regression model with arbitrary input signal (i.e. [6, 

7]). For example we do not need the condition { } 0nE v =  and the assumption { }
1n n

v
≥

 

is a sequence of independent variables with the same probability distribution. 

In the Chapter 2 of [2] is shown that under these assumptions we can effectively use the 
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SPSA algorithm or randomized least-square method. In our paper we will use SPSA 

algorithm which is following: 

( )1 1 , 1,2,...n n T n

n n n n
y nθ θ α φ θ− −= − Γ∆ − =  (2) 

where 0
n

α ≥  is nonrandom sequence which is defining the step of the algorithm, and 

Γ  is some positively definite matrix. 1 2, ,...φ φ  are realization of sequence of bounded 

independent random variables with the same probabilistic distribution, known 

mathematical expectation. Mφ , with finite, positive dispersion 
2 0σ > , with 3

rd 

moment about mean zero and finite 4
th 

central moment 
4

4M . Note that vectors 

{ },n nEφ φ (and thus { }n n nEφ φ∆ = −  called sample perturbation) are assumed to be 

known. Figure 1(a) shows the principal scheme of the experiment where SPSA algorithm 

is applied. Experimentalist choose the parameter 
n

φ  randomly. The noise of unknown 

nature,
n

v , appears in the experiment and results of observations,
n

y , has to be analysed. 

Following the consideration presented above in the chapter we have to come to the real 

estimated value, θ , at n → ∞  with probability equal to one.  

 

3. Photoemission experiment 

 

PE spectra [8] were measured from W(110) single crystal kept at room temperature. 

Experiments were performed in the setup based on the hemispherical energy analyser 

(SPECS PHOIBOS 150) [9]. The overall-system energy resolution accounting for the 

thermal broadening was set to 150 meV and electrons were collected in angle-integrated 

mode around surface normal. The base pressure was in the range of 1×10
-10

 mbar. Prior to 

experiment, the W(110) crystal was carefully cleaned by repeated cycles of heating up to 

1300
o
C in oxygen ambient pressure of 5×10

-8
 mbar for 15 min each and subsequent 

flashing up to 2300
o
C. After such procedure the crystal was kept in vacuum for 24 hours 

in order to passivate the surface of the crystal by residual gases in the experimental 

chamber. This step is necessary for the better stability of the crystal surface in the long-

time experiment. Photoemission is a surface sensitive method and absorption of residual 
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gases can drastically change the shape of photoemission spectra. As an excitation light 

sources in photoemission experiment we have used He IIα resonance line (hν = 40.8 eV) 

and Al Kα emission line (hν = 1486.6 eV) in order to produce “studied photoemission 

signal” and “noise”, respectively. The scheme of the experiment is shown in Fig. 1(b). 

Photoemission spectra were collected in the range of 25.8 - 37.8 eV of kinetic energy of 

emitted photoelectrons. In this case the He IIα radiation of random intensity produce 

photoemission spectrum of the valence band of W(110) surface (Fig. 2, open circles). In 

the same time experimentalist knows the intensity of incoming He IIα radiation. The 

photocurrent produced in this process can be written 

Ω
⋅⋅=

d

Ed
EDOSIEj kin

kinkin

)(
)()(

σ
, 

where I  is the intensity of the light source (He IIα), DOS is the density of states of 

W(110) surface /d dσ Ω is the cross-section of the photoemission process, Ekin=hν-W-

EB is the kinetic energy of the photoelectron (W-work function of the material, EB- 

binding energy of the electron in the solid). Since /d dσ Ω  is practically constant in the 

small energy range the total photocurrent can be written as 

)()( kinkin EDOSconstIEj ⋅⋅= . 

 
Fig. 2. Experimental photoelectron spectra of the valence band of W(110) obtained with He IIα radiation 

with (open circles) and without (closed circles) SN. Spectrum obtained after application of SPSA 

algorithm to the series of 50 experimental spectra is shown by straight line. The gray area in the low part 

of the plot is a SN. 12 black arrows show control points used for demonstration of the convergence 

dynamic of algorithm.  
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It is proportional to density of states and to intensity of incoming radiation. 

In every spectrum the “noise” [N(Ekin)] was introduced by switching-on the x-ray source 

in the range of 28.8 - 35.9 eV of kinetic energy and resulted spectrum in this case is 

shown by closed circles in Fig. 2. In such way introduced noise represents secondary 

electrons in the x-ray spectrum of the W(110) surface. This source of electrons is 

independent on the first one produced by He IIα radiation. 

From this consideration we can rewrite the total photocurrent in the following form: 

)()()( kinkinkin ENEDOSconstIEj +⋅⋅= . 

This expression is analogous to the general equation of linear regression model  (1):   

T n

n n n
y vφ θ= + , 

n n
wθ θ= + , n = 1,2,… 

where yn=j(Ekin), φn=I, 
n

φ =const*DOS(Ekin), vn=N(Ekin). And vn is a systematic noise.  

 

4. Experimental data proceeding 

 

To proceed experimental data we used SPSA algorithm (2) with 
21/( )

n n
nα σΓ = . In our 

notation it will be: 

1 1

2
( )

nn n n

n n

M
y

n

φ

φ

φ
θ θ φ θ

σ

− −
−

= − −  

For the analysis we have used 50 scans of PE spectra where SN was introduced. Figure 2 

shows us that spectrum obtained after application of SPSA algorithm is in a good 

agreement with clear spectrum without SN. Figure 3 shows us the evaluation of estimated 

value 
k

θ . Here we can see that around 20 step the estimation process almost stabilized. 

And from the step 46 we have the most precise estimation. 

 

5. Conclusions 

 

We showed that the application of SPSA algorithm is effective way to deal with SN in 

linear regression model. As an example we applied this algorithm to  filtering of random 

noise in PE spectra. Here we have found that set of 50 spectra is already enough in order 
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to eliminate systematic error. On the basis of these results we conclude that application of 

SPSA algorithm can be useful for analysis of different experimental data (for example, 

photoelectron spectra). 
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Fig. 3. Convergence of the SPSA algorithm: the estimated values ( )kinconst DOS E⋅  of 12 control 

points marked by arrows in Fig. 2. 


