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Abstract
In order to design the control system for plasma cur-

rent, shape and position the structural parametric opti-
mization of transient processes is suggested. Optimiza-
tion approach to plasma dynamic is based on the con-
sideration of transient processes of the full-sized con-
trol object that is closed by a regulator of a decreased
dimension. It is suggested to use an integral perfor-
mance criterion as a functional that allows optimizing
the transient process, perturbed at the initial point set
and the set of external disturbances. In the framework
of this approach the optimization of plasma dynamics
of the ITER tokamak is given.
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1 Introduction
The problem of control plasma in nuclear reactor toka-

mak occupies the leading place in controlled thermonu-
clear fusion. The main task in this area is a plasma
feedback control system design. Problems of analysis
and synthesis of stabilizing regulators of current, posi-
tion and plasma shape in tokamak are of great impor-
tance.
The mathematical model of ITER tokamak plasma

control system is a very complex object which includes
various subsystems and differential equations that de-
fine plasma behavior. The structural schema of ITER
control system links external disturbances, plasma state
equations, filters system, vertical controller, current
and shape controller, power system and set of diagnos-
tic signals. Mentioned schema can be represented us-

ing the structural diagram in Fig. 1. Matrices of these
subsystems are known with constant components.
The plasma state equations are done based on the lin-

earization of differential equations that define plasma
behavior in deviation of equilibrium position, where
xst ∈ E67 is the state space vector, up ∈ E11 is the
control voltages vector, ys ∈ E18 is the diagnostic sig-
nals vector, e ∈ E7 is the measurement variables vec-
tor. Measurement vector includes deviation of plasma
current and six checked clearances between plasma and
tokamak chamber, which signed as g1, ...g6 and called
gaps. The function f(t) is external plasma disturbance,
which is called li, β − drops disturbance and is defined
in the following form

f(t) =
(
w1(t)
w2(t)

)
,

w1(t) = dβe
− (t/tβ), w2(t) = dle

−(t/tl),
(1)

where dβ , dl, tβ , tl are known real numbers. Power and
filters system are given and defined by construction fea-
tures of tokamak. To plasma shape stabilize the control
object is closed with a shape controller of a decreased
dimension with the following structure:

ẋc = Ac xc +Bc yf
u = Cc xc

(2)

where vectors u ∈ E11, yf ∈ E18 are the control
voltages and the diagnostic signals of the tokamak con-
trol system respectively, matricesAc, Bc, Cc are the



Figure 1. Structural model of ITER plasma control system.

Figure 2. The control object closure by the obtained regulator.

constant matrices of the controller, which must be ob-
tained. The control object closure by the obtained reg-
ulator is done in accordance with the scheme in Fig.2.
By the “regulator synthesis” we mean such a choice of

component of controller matrices that gives us a stable
closed object and sufficient quality of stabilization. The
stabilization quality performance base on the numerical
characteristics such as the integral of squared gaps

Igaps =

T∫
0

∑
i=1...6

g2
i (t) dt (3)

and the settling time

tsettling = min
t̃
{t̃ : max

i=1...6
|gi(t)| ≤ 0.01, ∀t ≥ t̃},

(4)
Also, we need take into account the nonlinear ampli-

tude constraints on control voltage signals. For exam-
ple, the ITER tokamak has 11 control coils with con-
straints on voltage amplitudes. These constraints have

various numerical values and can be represented in the
following form

ui =

⎧⎨⎩
ci,
ui,
−ci,

ui > ci
|ui| ≤ ci
ui < −ci

, i = 1, ..., 11 , (5)

where i is index of coil, ci is amplitude maximum for
i-th coil. It complicates the design of the controller
and allows no simple raise in the magnitude of control
voltage signals.
Note that the controller design is analyzed by means

of the linear model, however this controller is tested
on the nonlinear model, and has to possess appropriate
characteristics.

2 Parametric Optimization Method
In order to design the control system for plasma cur-

rent, shape and position the structural parametric op-
timization of transient processes is suggested. In the
framework of this approach, the optimization of tran-
sient processes of the full-sized control object that is
closed by a regulator of a decreased dimension is con-
ducted. It is suggested to use an integral performance
criterion as a functional that allows optimizing the tran-
sient process, perturbed at the initial point set and the
set of external disturbances.
As a rough approximation for optimization the shape

controller can be obtained, for example, using the re-
duction procedure and the LQG-optimal synthesis, see
[4-10] for more details. So, let us investigate the equa-
tions of the control object presented in Fig.1 with con-
stantly applied perturbation (1), which is closed by



the regulator of decreased dimension (2) and the an-
other subsystem of the structural diagram. We com-
bine the structural diagram of control system into
a system of linear differential equations with distur-
bances. To do that, let us introduce the following vec-
tors and matrices: extended state-space vector x =
{xst, xv, xp, xf , xc} that includes plasma states, ver-
tical controller states, power system states, filter system
states and shape controller states; matrices P and N
with constant components such what P is a matrix of
the linear part of the system mentioned above, and N
is the coefficient of the non-linear part; these matrices
can be easily identified in Fig.1; the matrices L and K
for linear combinations with extended state-space vec-
tor. Further, the elements of matrices Ac, Bc, Cc of
the dynamic shape controller will be taken as parame-
ters that are to be optimized and combined into a vector
of parameters

p = {pk} ←→{Ac, Bc, Cc} . (6)

So, by using the newly introduced variables, we repre-
sent the structural diagram of the control system shown
in Fig.1 in the following form:

ẋ = P (p)x+N(p) f(t),
x(0) = x0

f(t) = f(dβ , tβ , dl, tl, t),
e = Lx(t, x0, p),
u = K(p)x(t, x0, p),

(7)

where x ∈ E112 is the extended state space vector,
e ∈ E7 is the measurement variables vector, u ∈ E 11 is
the control voltages vector, P, N, L, K are the above
introduced constant component matrices, f(t) is the
li, β − drops disturbance, p = {pk} is a vector of
parameters. Note, that the matrices Ac, Bc, Cc of a
designed regulator (2) will be taken as parameters that
are to be optimized. We combine the elements of these
matrices into a vector of parameters p = {pk}, where
each parameter has it own index. By labeling it P (p)
andN(p) we emphasize that it depends on the parame-
ters that are being optimized. Based on this differential
system (7) we have measurement variables vector e and
control voltages vector u.
It is suggested to use the following integral perfor-

mance criterion that allows optimizing the transient
processes perturbed by the initial point and external
disturbance

I(p) =
T∫
0

{e∗(t)Qe(t) + u∗(t)Ru(t) } dt+
+ e∗(T )Q1e(T )→ min,

(8)

where Q,R,Q1 are symmetrical weight matrices. The
minimization algorithm of this functional by parame-
ters p = {pk} is suggested bellow. Let entered addi-
tional differential equation

dψ
dt = −P ∗ψ + 2 (L∗QL+K∗RK)∗x(t),
ψ(T ) = −2L∗Q1 Lx(T ).

(9)

Then, using vectorψ(t) we obtain a representation for
the gradient of the functional

∂I(p)
∂pk

= −
(
T∫
0

ψ∗(t)
(
∂P
∂pk

x(t) + ∂N
∂pk

f(t)
)
−

−2x(t)∗ ∂K
∗

∂pk
RK(p)x(t) dt

)
(10)

Based on the analytical expressions (6)–(10) a gradi-
ent optimization method for the functional (8) with re-
spect to the parameters p = {pk} is implemented for
C++ and MatLab environments.

3 Optimization Results
The optimization results are considered based on tran-

sient processes of checked clearances – gaps, which
are the members of the measurement variables vector
e ∈ E7 for the control object (7). The modeling of
transient processes of the control object closed with the
optimized and initial controller is shown. This initial
controller is obtained using the approaches described
in [4,10] and already possesses proper characteristics.
The graphical results of optimization are presented in
Fig.3 and Fig.4. The Fig.3 shows control voltage sig-
nals u1, ...u11 for control object closed with initial and
optimized controllers and Fig.4 shows transient pro-
cesses of gaps g1, ..., g6 for control object closed with
initial and optimized controllers of the nonlinear model
with voltage limitations.The Fig.3 shows that by using
equation for ui we can choose maximums of control
voltages according to their limitations, then raise them
and obtain better performance for measurement vari-
ables ei. This is illustrated in Fig.4. Also, we consider
optimization numerical characteristics the integral of
squared gaps and the settling time mentioned above
which are presented in Table 1.

4 Conclusion
This work is dedicated to questions concerning syn-

thesis and optimization of tokamak plasma control sys-
tem. The structural model of ITER plasma control sys-
tem is discussed and the structural parametric optimiza-
tion method is suggested. We combine the structural
diagram of control system into differential equations
system with disturbances. The estimate for the tran-
sient process ensemble dynamics is proposed. Based



Figure 3. Control voltage signals u1, . . . , u11 corresponding to a) initial controller and b) optimized controller.

Figure 4. Transient processes of gaps g1, . . . , g6 corresponding to a) initial controller and b) optimized controller.

Table 1. Settling time and integral of squared gaps for control object closed with initial and optimized controllers.

Control object closed with ini-
tial controller

Control object closed with op-
timized controller

Igaps = 0.027 Igaps = 0.024

tsettling = 6.373 sec. tsettling = 5.634 sec.

on the analytical expressions a gradient method of opti-
mization is implemented for C++ and Matlab environ-
ments. Results of the computations are obtained and
discussed. Numerical characteristics such as the inte-
gral of squared gaps and the settling time are presented
for the both initial and the optimized controllers. For
the optimized controller the squared gaps and settling
time are 11% and 12% lower, correspondingly.
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