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Abstract
In the present study, machine learning algorithms are

applied for modeling transport coefficients in strongly
nonequilibrium reacting gas flows. As a model case,
the problem of a high-speed flow of a five-component
air mixture around a sphere is considered. Various ap-
proaches for an application of machine learning meth-
ods, such as linear regression, k-nearest neighbors, sup-
port vector machine, regression tree, random forest, gra-
dient boosting, and neural network (multilayer percep-
tron) are investigated. For the transport coefficients re-
gression modelling the combination of machine learning
methods with the finite volume method is constructed.
The machine learning regressors are trained on the accu-
rate numerical data given by one-temperature approach
of the kinetic theory. The results of trained models
are compared with approximate formulae of Blottner-
Eucken-Wilke model. The results of different machine
learning methods are analyzed in terms of the relation-
ship between the obtained accuracy of calculations and
the overall speed of calculations. The overall time of
dataset formation and model training is estimated. The
design of the constructed multilayer perceptron is dis-
cussed. The machine learning methods considered in the
article can be used for the engineering problem such as
design of high-speed aircraft, as well as for modeling of
flows around complex shape bodies.
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1 Introduction
In recent years, sharp increase in the implementation of

machine learning methods for modeling of physical sys-

tems is detected [Fradkov, 2022; Plotnikov et al., 2019;
Fradkov and Shepeljavyi, 2022; Knyazev et al., 2023].
One of the most contemporary engineering problem is
the accurate modeling of non-equilibrium flow prob-
lems, and, in particular, high-speed flows [Schmidt et al.,
2019; Stokes et al., 2020; Brunton et al., 2020; Istomin,
2023]. For high-velocity flows the effects of significant
increase in temperature behind the leading shock wave,
the shock-front blurring, deceleration of the flow within
the shock layer, and aerodynamic heating of the surface
are observed. These effects lead for the necessity to take
into account physical and chemical processes, such as an
excitation of internal degrees of freedom (in particular,
vibrational and electronic), as well as dissociation and
ionization processes, and state-to-state reactions. The
processes mentioned above, along with the reduction in
gaseous medium density during high-altitude flight, may
have a significant impact on the flow [Surzhikov, 2011;
Surzhikov, 2018; Dobrov et al., 2022].

In the case of a sufficiently high concentration of gas
particles (Knudsen number Kn ≪ 1), the classical
model of a continuous medium can be used for the flow
modelling. This model is based on the hydrodynamic
equations obtained from the kinetic equations for the
distribution function [Lunev, 2007; Nagnibeda and Kus-
tova, 2009]. The systems of equations obtained in this
case rarely allow an analytical solution, and therefore the
use of numerical methods is usually required [Anderson,
2019]. These problems tends for the modelling with the
use of approximate formulae, that are typically applica-
ble within a limited range of gas-dynamic parameters.
It is obvious that such an approach cannot be treated as
flexible one due to impossibility of using for the condi-
tions outside the limited range of such approximation.

The approximation of a subset of the complete sys-
tem of gas dynamics equations for computational fluid
mechanics problems are widely studied [Ihme et al.,
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2009; Tracey et al., 2015; Sun et al., 2019]. For a dif-
ferent specific issues, such as developing of a simpli-
fied neural network model as an algebraic turbulence
model for computational fluid dynamics (CFD) simula-
tion [Sun et al., 2019]; a data-driven approach to tur-
bulence modeling in Reynolds-averaged Navier–Stokes
(RANS) simulations leveraging supervised learning al-
gorithms to improve the accuracy of turbulence closure
terms in CFD simulations [Tracey et al., 2015]; large-
eddy simulations (LES) for a methane-hydrogen flame
modelling [Ihme et al., 2009], etc.; the machine learning
methods are applied.

An overview of various applications of machine learn-
ing methods in fluid and gas mechanics can be found in
[Brunton et al., 2020]. In the paper [Campoli, 2021],
within the framework of the relaxation problem behind
a direct shock wave, the use of regression algorithms
for finding relaxation terms in kinetic equations, as well
as the use of a deep neural network for approxima-
tion of the solution of the complete system of ideal gas
equations, are considered. In the work [Weiner et al.,
2019] the use of such fusion for calculation optimiza-
tion for the problem of modelling transport processes in
the boundary layer via preliminary trained neural net-
work on a model problem is presented. The possibil-
ity of accelerating the calculation using a neural network
model on a coarser grid, maintaining the required accu-
racy, is shown. The implementation of a combination
of the finite volume method and data analysis tools at
each computational step for hydroaeromechanics prob-
lems are shown in [Maulik et al., 2022].

Machine learning methods offer a promising alterna-
tive to exact computational schemes by achieving accu-
rate parameter calculations specified during the training
stage in a significantly shorter computational time. Such
an approach for numerical simulation problems gives
a clear computational advantage. Moreover, using of
an input vector that defines the parameters of the flow,
allows to save the dependencies of the output data on
the input parameters. Currently, such methods has been
started to be actively used in the field of modern gas dy-
namics. The implementation of machine learning meth-
ods for accurate prediction pf physical quantities via pro-
cessing of large amounts of available data leads to a
significant reduction of computational effort and allows
for implementation for detailed state-resolved physical-
chemical kinetics models, relaxation rates and transport
coefficients [Istomin and Kustova, 2021; Campoli et al.,
2022; Bushmakova and Kustova, 2022; Gorikhovskii
and Kustova, 2022].It is shown that both approaches
are promising for further implementation in simulation
problem. The use of a neural network trained on the
data of transport coefficients calculated by the methods
of kinetic theory, is investigated in [Istomin and Kus-
tova, 2021]. It is shown that neural networks make it
possible to obtain a significant acceleration of the calcu-
lation speed for the transport coefficients, especially for
gas mixtures: the potential acceleration in calculation

speed increases as the number of gas mixture species
rises [Istomin and Kustova, 2021]. In our last investiga-
tion [Pavlov and Istomin, 2023] it is shown that among
several machine learning methods (neural network, lin-
ear regression, k-nearest neighbours, and support vector
machines), neural network regression is the most flexible
and promising method in terms of computational speed
and precision. In the present study the following list of
methods is supplemented by widely used methods such
as regression tree, random forest and gradient boosting.
Additionally to this, the comparison between different
neural network architectures with varying number of lay-
ers and neurons is discussed.

In the present study the application of machine learn-
ing methods to the problem of a high-speed air flow
around a sphere as a model simulation is considered. It
is assumed that air consists of a five-component mix-
ture (N2, N, O2, O, NO), taking into account internal
degrees of freedom of the molecules (rotational and vi-
brational). Ionization effects are not considered in this
study, as far as our primary focus is on the possibility
for implementation of various machine learning meth-
ods. The initial conditions of the simulation align with
those of the experiment [Lobb, 1964]. The experiment
provides experimental data on the thickness of the shock
layer, which can be measured using optical methods.
This thickness is exceptionally responsive to the under-
lying physical and chemical processes behind the shock
wave. The experiment covers a wide range of flow ve-
locities (2400-6500 m/s), approximately corresponding
to the initial condition of the reentry spacecraft into the
Earth’s atmosphere. Additionally, the experiment is of-
ten used for validation of the numerical simulation of
high-speed flows [Surzhikov, 2011; Dobrov et al., 2022].
Refined experiment results for the velocity range (2500-
3900 m/s) is given in [Nonaka et al., 2000]. Velocities
around 9800 m/s are discussed in [Zander et al., 2014].

The work seeks for the following objectives: the first
section describes the mathematical model of high-speed
flow. In the second section computational model for the
accurate and approximate approaches of transport coeffi-
cients calculation are considered. The third section cov-
ers the generation of the training dataset and the applica-
tion of machine learning methods based on the accuracy
and calculation time benchmarks. Finally, the results and
recommendations for the most suitable machine learning
methods, from the computational point of view, are pro-
vided.

2 Theoretical model of a viscous reacting gas mix-
ture flow

For high-speed flows of reacting gases many phenom-
ena that are not typical for supersonic flow are indi-
cated [Anderson, 2019]. These phenomena include the
thinning of the shock layer and the expansion of the
boundary layer. Consequently, they can merge into a
viscous shock layer, which requires the need of viscos-
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ity calculation for simulation issue. As a result, classical
gas-dynamic equations are inadequate for the flow de-
scription [Anderson, 2019]. At the same time high tem-
peratures just behind the shock front lead to energy de-
pendence on the mixture composition. that may changes
due to chemical reactions, excitation of the internal de-
grees of freedom of species, ionization etc. Concluding
this, in case of accurate modeling for gas dynamics prob-
lem all the effects mentioned above have to be taken into
account.

Under strongly non-equilibrium conditions multi-
temperature model or a state-to-state model are prefer-
able to be applied [Nagnibeda and Kustova, 2009]. At
the present work we consider continuum approxima-
tion, assuming that the rotational and translational en-
ergy modes of all species can be described by a sin-
gle temperature Ttr; vibrational and electronic energy
modes of all species supposed to be described by a sin-
gle temperature Tve. The discussion on the validity of
such an approach can be found in [Scalabrin, 2007].

Under such an assumptions, the governing equations
for a viscous reacting multi-component gas have the fol-
lowing form [Scalabrin, 2007]:

∂U
∂t

+
∂(Fi,inv −Fi,vis)

∂xi
= Ẇ, (1)

where the vector of conservative variables U is presented
in the form:

U =
(
ρ, ρs, ρu, ρv, ρw, Eve,s, E

)T
, (2)

s = N2, N,O2, O,NO

here u, v, w are the velocity components, ρ is the gas
mass density, ρs is the partial density of the s-species.
The flux density vector is divided into inviscid and
viscous parts (diffusion and convective fluxes, respec-
tively):

Fi,inv =



ρui

ρsui

ρuiu+ δi1p
ρuiv + δi2p
ρuiw + δi3p
Eve,sui

Eui + pui


, (3)

Fi,vis =



0
0
τi1
τi3
τi3

−qve,i,s
τiju

j − qtr,i − qve,i


, (4)

Ẇ =
(
0, ω̇s, 0, 0, 0, 0

)T
, (5)

here Eve,s is the total vibrational-electronic energy per
unit volume of mixture of the s-species in the mixture (in
particularly, only electronic in case of atomic species),
δij is the Kronecker symbol, Ẇ is the source term vector,
ω̇s is a source term of the s-species due to chemical reac-
tions. For the calculation stability, continuity equations
for the overall mass density and the density of each com-
ponents are solved simultaneously and independently.

The pressure p is restored by partial components ac-
cording to the Dalton’s law:

p =
∑
s

p =
∑
s

(ρsRsTtr) (6)

here Rs is the specific gas constant corresponding to the
s species.

The total energy per unit volume can be expressed in
the following form:

E =
1

2
ρ(u2+v2+w2)+Et+

∑
s

Eve,s+
∑
s

ρsh
o
s, (7)

here h0
s is the tabulated enthalpy for the s-species [Scal-

abrin, 2007], Et = Etr + Erot is the summ of energies
of translational and rotational degrees of freedom over
all species in the mixture, Eve,s = Ev,s + Ee,s is the
summ of energies of vibrational and electronic degrees
of freedom for s-species. The specific energies of differ-
ent degrees of freedom for molecular species are calcu-
lated by the following relations:

et,s =
3

2
RsTtr, (8)

er,s = RsTtr, (9)

ev,s = Rs
θv,s

eθv,s/Tve − 1
, (10)

eel,s = Rs

∑
i ̸=0

gi,sθel,i,se
−θel,i,s/Tve∑

i

gi,se−θel,i,s/Tve
, (11)

here θv,s is the characteristic vibrational temperature
for the s-species, θel,i,s and gi,s are the characteristic
electronic temperature and the degeneracy of the energy
level i for s-species. In the present study, five and four
low-lying electronic energy levels of atomic N and O are
taken into account; for molecular species N2, O2, NO
there are 15, 7, and 16 electronic levels, that are taken
into account [Scalabrin, 2007].
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Table 1. Initial conditions of experiments

Initial conditions Values

Sphere diameter, D 0.0127 m (0.5 inches)

Velocity, v∞ experiment #1: 2438 m/s

experiment #2: 6051 m/s

Density, ρ∞ 7.9 g/m3

Temperature, T∞ 293 K

Initial gas mixture N2(76.6%), O2(23.4%)

Figure 1. Computational domain in the projection on the meridional
plane.

Table 2. List of accounted chemical reactions.

# Reaction

1. O2 +M ⇌ 2O +M

2. N2 +M ⇌ 2N +M

3. NO +M ⇌ N +O +M

4. NO +O ⇌ O2 +N

5. N2 +O ⇌ NO +N

Using expressions (8)-(11), the specific enthalpies at
constant volume for each species can be expressed [Scal-
abrin, 2007]:

Cvt,s =
3

2
Rs, (12)

Cvr,s = Rs, (13)

Cvv,s
= Rs

(θv,s/Tve)
2e

θv,s
Tve(

e
θv,s
Tve − 1

)2 , (14)

Cvel,s =
∂eel,s
∂Tve

, (15)

According to the law of mass action, the right hand side
of the equation (1) for source term ω̇s of the s-species
due to chemical reactions can be calculated:

ω̇s = Ms

∑
s

(ν′′s,r − ν′s,r)×

[
kf,r

∏
s

( ρk
Mk

)ν′
k,r

− kb,r
∏
s

( ρk
Mk

)ν′′
k,r

]
, (16)

here ν′s,r, ν
′′
s,r are the stoichiometric coefficients of the

direct and reverse reactions of the s-species in the reac-
tion r, the summation occurs over all reactions.

Rate constant of a chemical reaction kf satisfies the
Arrhenius law:

kf (Tc,f ) = A× T β
c,f exp

(
− Ta

Tc,f

)
, (17)

here A and β are the frequency factor and specific con-
stant of each reaction [Scalabrin, 2007], Ta is the activa-
tion temperature, Tc,f is the effective temperature of the
forward reaction. For backward reactions the rate coeffi-
cient is calculated by the formula:

kb,r =
kf,r
Kr

, (18)

here Kr is the equilibrium constant.

2.1 High-speed flow past a sphere
The principal scheme of the high-speed flow around a

sphere according to an experiment [Lobb, 1964] is given
in the Figure 1. In the experiment, a small diameter ny-
lon sphere is fired into the air using a light-gas launcher.
With a photographic setup and an optical schlieren sys-
tem, the shock detachment distance was captured and
measured over a wide range of high-speed velocities. In
the present study two initial conditions #1 and #2 behind
the shock front are considered (see Table 1).

When modeling, a five-component airflow, consisting
of (N2, N,O2, O,NO), is considered. In the Table 2
The list of accounted reactions of dissociation (reactions
1-3) and Zeldovich reactions (reactions 4 and 5) is pre-
sented.

Reaction rate constants are taken from well known
Park’s model [Park, 1993]. For dissociation reaction
the effective temperature changes according to Park’s
model [Park, 1990]:

TP = TαP

tr × T 1−αP
ve , (19)
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here αP = 0.7 [Candler and Nompelis, 2009]. For Zel-
dovich reactions Ttr is used.

For numerical simulations of high-speed viscous flows
under two-temperature approach, it is necessary to solve
equations (1)–(4) for each volume of the computational
grid, while the grid size may reaches millions of cells
or even more, depending on the flow geometry. For
this reason implementation of machine learning meth-
ods for many various engineering issues like transport
coefficients calculation may crucially increase the speed
up and overall precision.

3 Transport coefficients modelling
Taking into account the Stokes hypothesis, the compo-

nents of the viscous stress tensor τij in the equation (4)
have the following form:

τij = η
( ∂ui

∂xj
+

∂uj

∂xi

)
+ (ζ + η2)

∂uk

∂xk
δij , (20)

here η and ζ are shear and bulk viscosity coefficients,
η2 = ζ− 2

3η is second viscosity coefficient. In the further
modelling the Stokes hypothesis is stated: ζ = 0, η2 =
− 2

3η.

3.1 Kinetic theory approach
In case of exact calculation of transport coeffi-

cients, the kinetic theory algorithms have to be im-
plemented [Nagnibeda and Kustova, 2009]. Us-
ing Chapman-Enskog method, for two-temperature ap-
proach the first-order distribution function is derived in
terms of the gradients of macroscopic flow parameters:
velocity, temperatures, and species number densities.
The relations for first-order distribution functions con-
sist coefficients at the gradients that are unknown func-
tions of molecular velocity. The integral equations for
the unknown functions mentioned above are derived. Fi-
nally, the transport coefficients are expressed in terms of
the bracket integrals with respect to the aforementioned
unknown functions.

This means that at each calculation step of our mod-
eling, linear systems of equations for each transport
properties have to be solved numerically [Istomin et al.,
2023]. It is worth noting that the order of linear sys-
tems depends on the chosen approach: the case of
two-temperature approach, considered in the following
work, represents one of simpler choice for high-speed
flows [Istomin et al., 2022]. In this case, contrary to
the most accurate state-to-state approach where the or-
der of system ranges from several tens to several thou-
sands, the number of linear equations remains around
ten. Additionally, the transport coefficients represent
functions of temperatures, pressure and number densities
of all species, Consequently, even in two-temperature
approach the problem of accurate calculation of trans-
port coefficients remains a computational heavy task [Is-
tomin et al., 2022]. It is worth mentioning that these rig-

orous computationally expensive algorithms are imple-
mented in the KAPPA library [Campoli et al., 2019]
and PAINeT software package [Istomin and Kustova,
2021].

In the present study, for assessment of our approach on
applicability of machine learning methods, we are lim-
ited the calculation of thermal conductivity λ and shear
viscosity η coefficients in a (N2, N, O2, O, NO) mixture
by one-temperature approach, given in the dataset [Is-
tomin, 2023]. Nevertheless, in the future work another
databases, formed on the results of transport coefficients,
given by two-temperature or state-to-state approaches,
also can be easily implemented.

Due to the fact that training data are produced for one
temperature approach, all the output data are calculated
for single overall temperature. This overall temperature
can be determined by considering the different molec-
ular temperatures and their respective degrees of free-
dom [Butler and Brokaw, 1957]:

T =

∑
s Xs ((ζt,s + ζr,s)Ttr + (ζv,s + ζe,s)Tve,s)∑

s Xs(ζt,s + ζr,s + ζv,s + ζe,s)
,

(21)
here ζ is the number of degrees of freedom in relation to
one specific energy mode:

ζt,s = 3, ζr,s = 2,

ζv,s =
2cv,s(Tve,s)

RsTve,s
, ζe,s =

2cel,s(Tve,s)

RsTve,s
. (22)

3.2 Approximate formulae
The most computationally efficient and simple ap-

proach is implementation of approximate formulae like
the Sutherland or Blottner equations for viscosity, and
the Eucken equation for thermal conductivity rela-
tions [Eucken, 1913; Vincenti and Kruger, 1965; Blot-
tner et al., 1971; Istomin et al., 2014]. Shear viscosity
is calculated for each species in the mixture using the
Blottner model [Blottner et al., 1971]:

ηs = 0.1e[(As lnTtr+Bs) lnTtr+Cs], (23)

As, Bs, Cs are tabulated constants [Scalabrin, 2007].
The spatial components of translational-rotational and

vibrational-electronic thermal conductivity can be calcu-
lated by the Fourier law:

qtr,i = −λtr,s
∂Ttr,s

∂xi
, qve,i = −λve,s

∂Tve,s

∂xi
, s ∈ Ns.

(24)
The thermal conductivity coefficients for each species
are calculated taking into account the Eucken correc-
tion [Vincenti and Kruger, 1965]:

λs = λtr,s + λve,s, (25)
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Table 3. Machine learning algorithms and optimal hyperparameters

Algorithm Optimal parameters

Linear regression with intercept

k-nearest neighbors number of neighbors: 70

Support vector machine C: 2000, ε : 0.1

Regression tree

depth: up to 30

number of leaf nodes: up to 1000

min. sample number to split: 20

Random forest

depth: up to 70

minimum number to split: 2

number of trees: 400

Gradient boosting

learning rate : 0.05

depth: up to 5

number of trees: 1000

min. sample number to split: 10

Neural network

(multilayer perceptron)

number of hidden layers: 1

number of neurons per layer: 64

activation function: ReLU

optimizer: l-bgfs

λtr,s = ηs

(
5

2
Cvt,s + Cvr,s

)
, λve,s =

5

4
ηsCvve,s

,

here Cvt,s , Cvr,s , and Cvve,s are the specific heats of
translational, rotational, and vibrational-electronic de-
grees of freedom at a constant volume.

Thermal conductivity and shear viscosity coefficients
for the mixture can be calculated using the Wilke’s
law [Wilke, 1950]:

λ =
∑
s

Xsλs

ϕs
, η =

∑
s

Xsηs
ϕs

, (26)

here Xs is the mole fraction of the s species; λs =
λtr,s + λve,s; ϕs is the coefficient calculated as fol-
lows [Palmer and Wright, 2003]:

ϕs = Xs +
∑
r ̸=s

Xr

(
1 +

√
ηs
ηr

(Mr

Ms

)1/4)2

×

×
(√

8
(
1 +

Ms

Mr

))−1

, r ∈ Ns, (27)

here Ms and Mr are the mass of the particles s and r,
correspondingly.

It is worth to note that approximate formulae can be
easily incorporated into engineering codes. However,
these formulae are limited by the temperature and pres-
sure ranges within they are valid, and are not intended for
non-equilibrium conditions that occur in high-speed gas
mixture flows. These considerations lead us to explore

methods for accurately accounting for all effects, asso-
ciated with high-speed non-equilibrium flows, as well as
an efficient method for calculation of the transport coef-
ficients taking into account all these effects.

3.3 Machine learning algorithms
To assess the usability of different machine learn-

ing algorithms, at the first step the transport coeffi-
cients of (N2, N,O2, O,NO) mixture are calculated
using the PAINeT (Planet Atmosphere Investigator
of Non-equilibrium Thermodynamics) software pack-
age [Istomin, 2018; Istomin, 2019; Istomin and Kus-
tova, 2021]. Another possible way is to use a simpler
approach like Wilke’s mixing rule, but with an accurate
data of transport coefficients of single-component gases
(the results from PAINeT for each component of the
mixture are also extracted). In the present study both ap-
proaches to the problem are assessed. It total, output vec-
tors for the physical properties and transport coefficients
[Cp, λtr, λint, η] for six gases (5 single-component gases
and (N2, N,O2, O,NO) and mixture) in wide ranges of
input vector [T, p, ns] randomly generated values of tem-
perature 273 - 100 000 K, pressure 500 - 202650 Pa, and
number densities ns are produced. The dataset, given
in [Istomin, 2023], is used for training of different ma-
chine learning models.

The input vector of five-component mixture includes
temperature, pressure, and molar fractions of mixture
species, resulting in totally 7 features for each target
variable (2 features for one-component gases). The
dataset contains 30000 samples of these features for
each coefficient. The validation of data is confirmed by
the rigorous kinetic theory algorithms and experimen-
tal data [Istomin and Kustova, 2017]. Using the grid
search algorithm and cross-validation procedure, the op-
timal parameters of various machine learning regression
algorithms, presented in scikit-learn library [Pedregosa
et al., 2011], are tuned. The list of the machine learning
methods and optimal parameters are listed in the Table 3.
For support vector machine and gradient boosting meth-
ods a multi-output wrapper of multi-target regression is
implemented. For neural network (multilayer perceptron
model) the rectified linear unit (ReLU):

f(x) = max(0, x),

as an activation function is implemented.
The dataset is split into training and test sets, with pro-

portions of 70% and 30%, respectively. All input data
are normalized with z-score normalization. Using the
different loss functions: mean absolute procentage error
(MAPE) and root mean square error (RMSE), as well
as the coefficient of determination (R2), the compari-
son on the test samples after training procedure is pro-
duced. The evaluation of the trained models is made on
the whole test set. Furthermore, comparison of computa-
tional times for training and a sample output vector pre-
diction using the selected optimal model is provided.
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Table 4. Comparison of accuracy metrics for multicomponent air re-
gression on the output vector [Cp, η, λtr, λint]

Algorithm MAPE RMSE R2

Linear regression 0.3339 0.578 0.6773

k-nearest neighbors 0.1223 0.350 0.8808

Support vector machine 0.0118 0.109 0.9885

Regression tree 0.0357 0.189 0.9654

Random forest 0.0070 0.084 0.9932

Gradient boosting 0.0023 0.047 0.9978

Neural network 0.0072 2.0e-6 0.9999

Table 5. Comparison of training tlearn and prediction tpred
times for multicomponent air regression on the output vector
[Cp, η, λtr, λint]

Algorithm tlearn, [s] tpred, [s]
tlearn

tpred

Linear regression 0.005 0.0002 33

k-nearest neighbors 0.006 0.1587 0.04

Support vector machine 818.5 0.5323 1537

Regression tree 0.041 0.0003 137

Random forest 30.78 0.4126 75

Gradient boosting 103.3 0.1770 584

Neural network 11.58 0.1505 77

3.4 Application of neural network to CFD simula-
tion

At the first stage, CFD flow simulation is carried out
according to the model proposed in Section 2. After that,
on the basis of calculated transport coefficients, using the
values of pressures and temperatures on the stagnation
line the regression model of trained neural network is
applied. Pressure, temperatures and molar fraction val-
ues, obtained through CFD simulation, are used as input
data for the regression models. Finally, all the results
for different models and approaches are compared be-
tween each other: 1) approximate formulae implementa-
tion (Blottner-Eucken-Wilke model): 2) neural network
regressor of output vector for the mixture; and 3) neu-
ral networks regressor of output vector for the single-
component gas with further implementation of Wilke’s
mixing rule.

4 Results
4.1 Evaluation of machine learning methods appli-

cability
The results on the accuracy and calculation times for

the different machine learning algorithms are presented
in the Tables 4 and 5. Various approaches for an appli-
cation of machine learning methods, such as linear re-
gression, k-nearest neighbors, support vector machine,

regression tree, random forest, gradient boosting, and
neural network (multilayer perceptron) are investigated.
Conventional statistical methods for regression problem
are unable to effectively handle complex interactions
within the dataset, whereas machine learning algorithms
generally demonstrate satisfactory accuracy level (with
exception of k-nearest neighbors and linear regression
algorithms). At the same time we have to keep in mind,
that all these algorithms are limited by the requirement
of large datasets for effective model training. Based
on the obtained results, the most promising in terms of
the accuracy and speed of calculation is neural network
(multilayer perceptron model). Ensemble methods like
gradient boosting and random forest also demonstrate
good accuracy; however, they both require significantly
more computational resources for training and execu-
tion (see Table 5). The tlearn/tpredict ratio here serves
as a metric to assess the efficiency trade-off between the
learning and prediction stages, offering insights into re-
source utilization and scalability: lower values provides
the potential for retraining or fine-tuning the model.

4.2 Optimal neural network regression model
As soon as the speed-up and accuracy of the multilayer

perceptron with a one-hidden-layer architecture for out-
put vector modeling, as stated in the subsection above,
are confirmed, another interesting question arises: what
is the relationship between the optimal computation time
(minimum number of neurons and/or layers required)
and the desired level of accuracy? Comparison between
different neural network architectures with varying num-
ber of layers and neurons is shown in the Table 6 for dif-
ferent accuracy metrics, and in the Table 7 for the train-
ing and prediction calculation times. It is clearly seen,
that the lowest error metrics and best value of the coef-
ficient of determination R2 belongs to two architectures
of 64 and (32, 32) neurons in the hidden layer(s). Fur-
ther in the present study the architecture of 64 neurons
in one-hidden layer multilayer perceptron model is im-
plemented. Nevertheless, it is worth to note that neural
network architectures, deeper than three hidden layers,
also may have greater potential after meticulous study
for hyperparameter selection.

The comparison in Tables 6 and 7 also includes the
evaluation of different neural network architectures in
terms of metric results and calculation times. It is ob-
served that when comparing neural network regression
with approximate formulae, the latter becomes an inef-
fective choice in terms of accuracy, even when compu-
tational speed is comparable. It must be noticed, that
given value for prediction calculation time of approxi-
mate formulae is the result of vectorized and optimized
code realization for computation fluid dynamic solver,
while for neural network regression optimization is built
in into the code from scratch [Pedregosa et al., 2011].
For such realizations the speed-up up to 4 times for best
neural network regressor is detected.
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Table 6. Comparison of accuracy metrics for different multulayer
perceptron architecture.

Perceptrons in layers MAPE MAE MSE R2

4 5e-02 1e-05 3e-10 0.99395

32 9e-03 2e-06 5e-12 0.99989

64 7e-03 1e-06 3e-12 0.99992

(4, 4) 3e-02 9e-06 1e-10 0.99706

(16, 16) 7e-03 2e-06 4e-12 0.99991

(32, 32) 7e-03 1e-06 3e-12 0.99992

(8, 8, 8) 1e-02 3e-06 2e-11 0.99964

(16, 16, 16) 1e-02 2e-06 9e-12 0.99979

(32, 32, 32) 6e-03 2e-06 5e-12 0.99989

Approximate formulae 8e-02 4e-05 4e-09 0.91462

Table 7. Comparison of training tlearn and prediction tpred times
for different types of multulayer perceptron architecture.

Perceptrons in layers tlearn, [s] tpred, [s]
tlearn

tpred

4 5.38 0.011 489

32 9.19 0.071 129

64 11.58 0.151 77

(4, 4) 5.90 0.019 31

(16, 16) 9.96 0.056 18

(32, 32) 12.59 0.145 87

(8, 8, 8) 11.41 0.056 204

(16, 16, 16) 15.97 0.108 148

(32, 32, 32) 17.41 0.223 78

Approximate formulae - 0.526 -

Once the model is configured and trained, the neu-
ral network’s weight array and configuration data can
be transferred as a surrogate model to external CFD
solvers [Jiang2020]. This approach holds promising po-
tential for enhancing accuracy and accelerating compu-
tational speed in CFD solvers when simulating viscous
high-speed nonequilibrium reacting flows.

4.3 Neural network implementation for transport
coefficients calculation

The behavior of temperatures T, Ttr, and Tve behind
the shock front is shown on the Figure 2. For the experi-
ments [Lobb, 1964], considered in the study, Mach num-
bers are approximately equal to 9 and 20, and therefore
just behind the shock front temperature grows sharply
and reaches 5 000 K and 10 000 K correspondingly.

On the Figures 3 and 4 the comparison of the results for
shear viscosity η (see Figure 3) and thermal conductivity
λ (see Figure 4), given by different models, are shown.

For direct application of the regression model we con-
sider the different options of regressions of transport co-
efficients: regression for the mixture, or regression of in-
dividual components with the Wilke’s mixing rule. The
comparison of the different approaches for the shear vis-
cosity calculation (see Figure 3) shows, that before the
shock wave all the models for shear viscosity calcula-
tions are nearly coincide (discrepancy does not exceed
5-10 %), while just behind the shock front the maximum
of mean absolute percentage error may achieved up to
40 %.

Following equation (25) for approximate formulae,
thermal conductivity depends on shear viscosity, and
therefore its behavior (see Figure 4) is very similar for
those presented on Figure 3. The one difference is that
for thermal conductivity the results for Eucken model
and Wilke’s rule for neural network results are overesti-
mated results for mixture, given by the accurate results
of neural network.

The results above are confined by the relative errors
presented in Table 8, which shows the average and max-
imum absolute percentage errors for shear viscosity (η)
and thermal conductivity (λ). These values are calcu-
lated using the Blottner-Eucken-Wilke model and single-
component neural networks with Wilke’s mixing rule.

Under such strongly non-equilibrium conditions it
is clearly seen that approximate Blottner model over-
estimates the values of shear viscosity in the high-
temperature range just behind the shock front. In con-
trast, implementation of Eucken formulae underesti-
mates thermal conductivity coefficient. Additionally, it
is shown, that implementation of neural networks for
single-component gas with Wilke’s mixing rule, strongly
differs on both approximate and neural network for mix-
ture models, and therefore, should not be employed in
practical simulations.

Table 8. Average and maximum absolute percantage error of experi-
ments #1 and #2 for shear viscosity η and thermal conductivity λ be-
hind the shock front for Approximative model (Blottner and Eucken)
and Neural network with Wilke’s mixing rule, comparing to the most
accurate data of Neural network for mixture

Experiment Approximate Approximate Neural network Neural network

model, avg. model, max. (Wilke’s rule), avg. (Wilke’s rule), max.

η, #1 3.8% 18.3% 11.0% 43.1%

η, #2 9.8% 18.4% 23.6% 43.7%

λ, #1 16.4% 23.1% 14.3% 65.5%

λ, #2 17.8% 34.4% 31.8% 66.7%

5 Conclusion
In the present study, assessment of different machine

learning methods for regression of transport coefficients
is given. As a model case, the problem of a high-speed
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Figure 2. Behaviour of temperaturesT, Ttr, Tve behind the shock
front for experiments #1 (top) and #2 (bottom).

flow of a five-component air mixture around a sphere
is considered. Various approaches for an application of
machine learning methods, such as linear regression, k-
nearest neighbors, support vector machine, regression
tree, random forest, gradient boosting, and neural net-
work (multilayer perceptron) are investigated.

The machine learning regressors are trained on the
accurate numerical data given by one-temperature ap-
proach of the kinetic theory. The results of trained
models are compared with approximate formulae by the
Blottner-Eucken-Wilke model.

The results of different machine learning methods
are analyzed in terms of the relationship between the
achieved accuracy of calculations and the speed of cal-
culations. It is shown that neural networks regression is
the most promising way in terms of achieving the desired
precision while maintaining efficient calculation speed.
Additionally, the comparison between different neural
network architectures with varying number of layers and
neurons is provided. The best architecture in terms of
accuracy and computational efficiency is given. Approx-
imate formulae of vectorized and optimized code real-
ization for computation fluid dynamic solver, and neural
network regression, given from scratch [Pedregosa et al.,

2011], are compared. For such realizations the speed-up
up to 4 times for best neural network regressor is de-
tected.

It has been observed that, before the shock wave,
the approximate formulae of the Blottner-Eucken-Wilke
model and the application of neural network regressors
yield qualitatively similar results, with a mean absolute
percentage error falling in the range of 5-10%. However,
just behind the shock front, the use of a mixing rule tends
to overpredict the shear viscosity and thermal conductiv-
ity coefficients, resulting in a mean absolute percentage
error of up to 40

This suggests that the utilization of neural network re-
gression, specifically a multilayer perceptron, for mod-
eling the vector of transport coefficients, including the
diffusion coefficient (to be explored in future work), can
potentially enhance computational efficiency for issues
related to computational fluid dynamics. The methods
discussed in this article are applicable to engineering
problems such as high-speed aircraft design and mod-
eling flows around complex-shaped bodies.

Figure 3. Shear viscosity coefficients behavior of different models as
a function of distance behind the shock front for experiments #1 (top)
and #2 (bottom).
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