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Abstract
In this paper, the conditions for periodic modes forma-

tion in the closed-loop pilot-vehicle system in the com-
pensatory control mode are established. The case of high
gain pilot task is considered under the conditions of a
sudden disturbance, as well as under the influence of the
system nonlinearities, such as actuator position and rate
limit. Sinusoidal input describing function method and
parametric resonance equation were used to determine
the onset conditions for self-oscillations and forced os-
cillations. The case when this methods lead to erroneous
results is established. The numerical limits of permissi-
ble pilot gain, time delay and reference signal at which
unstable periodic modes do not arise are calculated.
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1 Introduction
Modern flight control systems have a complex config-

uration, a variety of targets and must meet the require-
ments of high reliability and safety. Despite high level
of automation, aircraft control remains manual using el-
evators and pedals. A human pilot is still an integral part
of an aircraft and is closely connected with the flight con-
trol loop. In this regard, there is a need to study the ef-
fective dynamics of an aircraft in various flight modes.

The emergence of oscillatory modes is always unde-
sirable and dangerous for an aircraft. When controlling
in a closed loop, the so-called pilot-induced oscillations
(PIO) are isolated. They are characterized by a sud-
den appearance of aircraft oscillations in the longitudi-
nal and/or lateral direction with a small or jump-resonant

amplitude. The reasons for these oscillations are differ-
ent and explained by several factors. Typically, oscilla-
tions excitation triggers alter the dynamics component
of a closed-loop pilot-vehicle system, resulting in an in-
stability or weakly damped system. Thus, effective air-
craft dynamics with a high gain task is a necessary con-
ditions for PIO. appearance is the presence of effective
aircraft dynamics with a high gain task. Tracking tasks
with high pilot gain are characterized by precise control,
quick reactions and the desire for small errors typical
during aerial refueling, formation flying and carrier ap-
proach [McRuer and Warner, 1997; Anderson, 2005].

PIO often occurs under unusual flight conditions
caused by a sudden change in environmental conditions,
which in turn changes pilot dynamics. For example,
when an unexpected disturbance arises, leading to a
change in the overloads and orientation angles of the
aircraft and pilot control with some time delay. If ex-
ternal disturbance source is unknown for the pilot, they
intervene in the control with delay and the stabilization
process takes several seconds introducing a significant
negative phase shift between the input and output signal
[Byushgens and Studnev, 1979; McRuer et al., 1973].
Nonlinearities in the aircraft control actuator are consid-
ered to be one of the identified causes of PIO. They arise
due to physical constraints of stickkolumn deflections,
actuators position and rate limiters, and limiters in the
controller software.

In fly-by-wire system, the cockpit control device can-
not transmit information about saturation to the pilot. As
a result, the pilot can issue ill-timed or/and overshoot
commands. In this regard, several studies identify the os-
cillatory modes of nonlinear pilot-vehicle systems. One
of the widely used methods for studying such systems
is the numerical-analytical harmonic balance method,
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or sinusoidal input describing function (SIDF) [Garber
and Rozenvasser, 1965; Leonov and Kuznetsov, 2011;
Leonov and Kuznetsov, 2013]. With this method a non-
linear element is replaced with a linear one, which con-
verts harmonic oscillations in the same way as a nonlin-
ear element and is characterized by an equivalent com-
plex gain. Such a replacement allows studying of non-
linear systems by frequency methods. In particular, with
frequency methods, it is possible to detect the presence
of self-oscillations, investigate their stability, determine
their amplitude and frequency, and solve the problems of
a nonlinear system correction [Alcala et al., 2004].

Thus, in an asymptotically stable system [Andrievsky
et al., 2020; Kuznetsov, 2020; Andrievsky et al., 2013;
Andrievsky et al., 2016], the excitation conditions for
hidden oscillations were revealed. The pilot gain value
for autonomous motion was numerically determined, the
stability boundaries of the system when it changes were
shown on the Nyquist plot, and the value of the re-
quired reference input for the forced movement was de-
termined. Attention to the effects of rate limiting and
other system nonlinearities was given after severe PIO
events with the YF-12 aircraft during aerial refueling.
SIDF method for a rate limited actuator and an inverse
describing function method were used to predict limit
cycle oscillations [Ashkenas et al., 1964; Klyde et al.,
1995]. It was examined the effects of the simultaneous
presence of position and rate saturation in the control
loop and the value of the input signal causing the limit
cycles have been established [Amato et al., 2000]. Here
the effectiveness of the SIDF method was confirmed dur-
ing the X-15 flight, but the paper does not present numer-
ical results and confirmatory modelling.

In all cases, where aircraft dynamics are changing
rapidly, it is important to know how quickly the pilot
can adapt to the changing characteristics of the aircraft.
Evaluation of the numerical parameters of the system in
such cases is important to form requirements for the de-
gree of redundancy of automatic devices. In this regard,
this paper proposes to find the boundaries of the system
parameters at which the processes in the system lose sta-
bility. A more detailed consideration of the case with
actuator rate limit in the frequency domain is presented
finding reasons why the SIDF method gives incorrect re-
sults in the study of pilot-aircraft systems.

2 The SIDF Method and Equation of Parametric
Resonance

SIDF is a method that allows to extend the transfer
function concept of linear system studies to the non-
linear system problem [Garber and Rozenvasser, 1965].
It is the SIDF method to replace a system nonlinearity
by a linear gain, which renders similar the responses of
the nonlinearity and its approximation. When using the
SIDF method for the nonlinear dynamical system analy-
sis, the assumptions are made that the linear part of the
system does not pass high frequencies and the phase bal-
ance is observed. Consider the equations of harmonic

balance for self-oscillations and forced oscillations. Fol-
lowing [Krylov and Bogolyubov, 1947; Goldfarb et al.,
1976; Lurie and Enright, 2020], we assume that a har-
monic signal is fed to the input of the nonlinear element
F (u):

u(t) = A sinψ, (1)

where phase ψ = ωt, ω is frequency, t is time. Then
the output periodic signal of the nonlinear element takes
the form y(t) = F (A sinωt) and can be expanded in
Fourier series, where the harmonic linearization coeffi-
cients for the odd-symmetric nonlinear function of the
first harmonic amplitude A to the m-th harmonic ampli-
tude in complex form are:

Wm(A) =
1

πA

∫ 2π

0

F (A sinψ)e−jmψdψ, (2)

wherem is harmonic number. Equation (2) gives a SIDF,
which is approximately equivalent to the transfer func-
tion of the nonlinearity. Such a representation of nonlin-
earity allows one to study the system as linear, including
the study of limit cycles.

For an autonomous dynamic system containing the lin-
ear part W (jω) and nonlinear in the form of a harmon-
ically linearized element with respect to the first har-
monic W1(A) the harmonic balance equation has the
form:

W−1(jω) +W1(A) = 0 (3)

For non-autonomous system, when forced oscillations
act with amplitudeAi, the condition of harmonic balance
is written in the form:

W−1(jω) +W1(A) =
Ai
A
e−jϕ, (4)

where ϕ is phase shift between output and reference sig-
nal. When considering the influence of higher harmon-
ics, the same reasoning is used as for the first approxi-
mation.

To solve the general problem of stability consider a
nonlinear non-autonomous system in the form:

ẋ(t) = f(x(t), t), (5)

where f [·] is nonlinear vector-function. Suppose that
there exists a solution to this system u∗(t) and perturbed
motion in the form:

u(t) = u∗(t) + ∆u(t). (6)

Substituting the equation (6) in (5), we obtain the equa-
tion in increments, in which nonlinearity is

∆F [u∗(t) + ∆u(t)]

∆u(t)
∆u(t)

∣∣∣∣∣
∆u(t)→0

=
dF (u)

du
(7)
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Figure 1. Simple compensatory system [McRuer, 1995]

If the equation in increments has a stable single state of
equilibrium, then the unperturbed motion of the original
equation is also stable. The derivative of the nonlinear
element dF/du, calculated along the periodic solution
of the equation (5), is a periodically changing parameter.
The associated system oscillations are called parametric
oscillations, which can lead to the phenomenon of para-
metric resonance and, in turn, loss of stability system.
For stability analysis, F (u) is presented in a stationary
form (2). The condition for parametric resonance exci-
tation in a nonlinear system is written as [Chechurin and
Chechurin, 2017]:

W−1(jω) = a0 + ρe−jφ, (8)

where a0 = −W1(A) − A
2
dW1(A)
dA , ρ = −A

2
dW1(A)
dA are

the center and circle radius of parametric excitation, re-
spectively, φ is the phase shift between the periodic pa-
rameter oscillations and the input signal.

To clarify the stability conditions for forced oscilla-
tions, we consider the formation conditions of forced
oscillations (4) and the condition for the parametric res-
onance excitation (8) together. These equations do not
have solution if the diameter of the circumference of the
excitation of parametric resonance is less than the radius
of the circumference of the forced oscillations. Then the
stability condition of the forced oscillations is written as:

Ai > A2

∣∣∣∣ dWm(A)

dA
+W−1(jω)

∣∣∣∣ (9)

Thus, the above equations will be used to study the
nonlinear pilot-vehicle system.

3 Pilot-vehicle system model
Consider a model of a flight control system along a lon-

gitudinal channel in the compensatory movement mode.
Longitudinal movement is fundamental at all essential
stages of a flight, such as take-off, climbing, cruising,
landing and maneuvering in a vertical plane. In this
mode, commands and interference are generated ran-
domly, and the pilot acts based on system errors or air-
craft output. In conditions of full attention, the pilot
performs continuous control in a closed loop to mini-
mize the stabilization error. Notice that the system out-
put follows the system forcing function command to the
closed-loop pilot-vehicle system quite closely. Since the
dynamics of the real actuator are nonlinear, we take into
account active nonlinearities, such as position and rate

limit, to study the system. The model is graphically
shown in Fig. 1.

The pilot model is usually presented in the form of a
series-connected static element acting on the pitch er-
ror signal [MeRuer et al., 1965; Byushgens and Studnev,
1979; McRuer, 1995; Efremov et al., 2015]. During dis-
turbance compensation, the pilot acts as a proportional
or relay link, striving for control simplicity, and then the
pilot model is represented as a static coefficient with de-
lay:

Wp(s) = Kpe
−τs, (10)

where Kp is pilot gain, τ is pilot time delay.
The aircraft under investigation is controlled remotely

through a joystick, which acts as an elevator. The aircraft
actuator is modelled by an aperiodic link of the first order
[Andrievsky et al., 2013]. In this paper, the following
aircraft model is taken as an example, where the transfer
function from the elevator’s angle of deviation δe to the
pitch angle ϑ has the form [Mandal and Gu, 2016]:

Wa(s) =
30s2 + 115s− 49.3

s4 + 7s3 + 23s2 − 10.6s+ 0.3
(11)

It should be noted that this model is unstable and is
stabilized by introducing the pitch rate feedback loop as
follows: uc(t) = Kpe

−τsε(t) −Kqq(t), where uc(t) is
pilot signal, ε is pitch tracking error, q(t) is pitch rate,
Kq is rate gyro gain found by pole locus technique [An-
drievsky et al., 2015].

4 Oscillations Modes Stability
In the previous work [Zaitceva and Chechurin, 2019]

it was found that the study of actuator rate limit in pilot-
vehicle system by the SIDF method leads to erroneous
results, while the calculation of the oscillations modes
for the backlash is correct. After literature analysis of re-
lay systems with internal feedback [Korolev, 1956; Frid-
man et al., 1993], it was revealed that the same nonlin-
earity in different places of the control loop behaves dif-
ferently. Therefore, if nonlinearity is covered by a feed-
back loop, then nonlinearity function is no longer char-
acterised by a static Fourier coefficient, but a resonant
filter, which amplitude characteristics depend on the fre-
quency.

Rate limit actuator nonlinearity is closed by feedback
loop. The amplitude-frequency responses of rate limited
actuator and position limited actuator with the same pa-
rameters are shown in Fig. 2 (under the ratio character-
izing the slope of the nonlinear saturation function K/b
= 2.)

The larger the signal amplitude at the nonlinearity in-
put with respect to the actuator rate value, the higher the
peak response.

As another example, consider a system (10), (11) with
actuator position limit in the angle channel and accept
K/b = 2. Assume that the system forcing function
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Bode Diagram
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Figure 2. Amplitude-frequency response of rate and position limited
actuator

changes in harmonic law (1) with the amplitude Ai and
the frequency ω. The harmonic linearization coefficient
of the saturation nonlinearity q

′

1 in accordance with (2)
is:

q
′

1 =
2K

π

[
arcsin

b

A
+
b

A

√
1 −

(
b

A

)2]
(12)

According to (8), parametric excitation center and ra-
dius are:

a0 =
2K

π
arcsin

b

A
, ρ =

2K

π

[
b

A

√
1 − b

A

]
(13)

Equation (4) has several solutions for various system
parameters. One of them exists when under Kp = 2,
τ = 0.1, shown in Fig. 3. The parametric resonance circle
is highlighted in red.
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Figure 3. Harmonic balance

The intersection points of W1(A) and W−1(jω)
hodographs have values: ω = 13.8, A = 16.5. According
to (9), forced oscillations are stable at Ai > 0.5. Simu-
lation result for reference ϑ and actual ϑc pitch angles is
shown in Fig. 4. According to Fig. 1 ϑ = Asin(ωt) is
system forcing function, ϑc is system output. The pro-
cess is stable and has amplitude attenuation due to the
fact that the Fourier coefficient has an amplitude gain of
less than one.

Figure 4. Pilot-vehicle system response for a sinusoidal input

Calculations showed that there is no solution of (4) for
the Fourier coefficient of the high harmonics. Ampli-
tude estimation of high harmonics showed that the SIDF
method can be applied in terms of the first harmonic ap-
proximation.

5 Conclusion
The paper considers the closed-loop pilot-system in the

compensatory control mode. It was found that in this
system, it is possible to calculate the conditions for peri-
odic modes formation using the SIDF method and para-
metric resonance equations for such nonlinearities as po-
sition limitation, backlash. The amplitude and frequency
of self-oscillations were determined for position limita-
tion nonlinearity, the amplitudes boundaries of the in-
put signals were determined numerically in the first har-
monic approximation, at which the forced oscillations
are stable. Oscillatory modes caused by higher harmon-
ics were not detected. Possible application of the work
results will be useful for engineers investigating the non-
linear systems.
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