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B. Bamieh*and L. Giarréf

Abstract

We develop a method by which a large number of dif-
ferential equations representing biochemical reaction
kinetics may be represented by a smaller number of dif-
ferential equations. The basis of our technique is a con-
jecture that the high dimension equations of biochem-
ical kinetics, which involve reaction terms of specific
forms, are actually implementing a low dimension sys-
tem whose behavior requires right hand sides that can
not be biochemically implemented. For systems that
satisfy this conjecture, we develop a simple approxi-
mation scheme based on multilinear algebra that ex-
tracts the low dimensional system from simulations of
the high dimension system. We demonstrate this tech-
nique on a standard 10 dimensional model of circadian
oscillations and obtain a 3 dimensional sub-model that
has the same rhythmic, birhythmic and chaotic behav-
ior of the original model.

1 Introduction

The differential equations describing biochemical re-
action networks often involve a large number of species
(in the 10s or 100s). These equations are typically non-
linear and much of the understanding of these models
currently comes from observing their behavior through
numerical simulations. This is mainly due to the lack of
analysis tools for high dimension nonlinear dynamical
systems.

Biochemical kinetic equations can be written in the
general form

T = f(z), (D

where each of the state variables x;(t) represents the
concentration of a reactant (species) at a given time
t. An interesting special feature of kinetic equations
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is that the “rate function” f is typically (thought not al-
ways) polynomial (of several variables). Each compo-
nent of f is a linear combination of multinomial terms
of the form az;, ... z;,, where « is the rate of the reac-
tion between species i1, ..., %;. It is often the case that
each of these multinomial terms involve at most only
two or three state variables since most constituent reac-
tions are between only two or three species at a time.
Thus, the function f in equation (1) is a polynomial of
at most second or third degree. For the sake of motiva-
tion, in what follows we assume that the function f is
of at most quadratic order.

One may think of a biochemical reaction network as
being designed to produce a given behavior, say a sys-
tem switching between equilibria or limit cycles de-
pending on values of certain parameters. The observed
species whose behavior is of interest are typically few,
say two or three proteins. For such a small number of
species, label them y;, y2 and ys, it is often possible to
“design” dynamics like

¥ = P(y), 2)

where P is a function that can be designed so that the
system has a prescribed behavior. However, P will
most likely not be a second order polynomial, but will
involve many higher order terms and possibly irrational
terms.

The above reasoning leads to the following conjecture.
Biochemical reaction networks are trying to produce a
behavior that can be captured by a low dimension sys-
tem like (2), where P maybe a high order polynomial.
However, the nature of biochemical kinetics is that it
can only realize systems with a quadratic right hand
side like (1), but with as many reactants as needed. It
is thus plausible that the large number of extra species
are there in order to realize the required behavior using
quadratic biochemical kinetics.

If the conjecture is correct, then it is possible to take a
high dimension biochemical kinetics equation like (1)
and capture its behavior through a low dimensional sys-
tem like (2). This comes at the expense of using a right



hand side P of a more complex form than f. This how-
ever is not a serious disadvantage for the following rea-
son. The main tools for analyzing nonlinear dynamical
systems are graphical. They involve analysis of phase
portraits, from which equilibria, orbits and limit cycles
can be identified. This is tractable for low dimension
systems (dimensions of 2 or 3). Since one uses mainly
graphical tools, the low order system (2) is thus more
readily analyzed than (1) regardless of how complex
the form of the function P is.

To give the previous discussion a more precise foot-
ing, we now present another motivation for our method
that involves viewing common techniques like the Car-
leman linearization in reverse. It is well known [4; 7]
that any nonlinear system of the form (2) can be em-
bedded in an infinite dimensional linear system of the
form

Y = AY, (3)

where Y is an infinite dimensional vector with the orig-
inal vector y as a subcomponent, and A is a linear oper-
ator. The system (2) is embedded in (3) in the sense that
for any initial condition of (2) there is an initial condi-
tion of (3) where the trajectory of the z subcomponents
of Z are identical to the trajectory of (2).

The Carleman linearization is a kind of global lin-
earization scheme. There’s a related procedure [5; 6]
which we call quadratization in which a system like (2)
can be embedded in a system of the form

Y = Q(Y), )

where the function Q is a quadratic polynomial. When
the original function P is polynomial (of any order),
the quadratization (4) is finite dimensional.

The common feature of both the Carleman lineariza-
tion and quadratization procedures above is that they
take a lower dimension system with a complex right
hand side P, and embed it in a higher dimensional
system with a simpler right hand side (linear AY or
quadratic Q(Y") in the case of Carleman linearization
and quadratization respectively). The idea we pur-
sue in this paper is to see whether such procedures
(the quadratization in particular) can be reversed. In
other words, given a high dimensional system with a
quadratic right hand side like (4), one can ask whether
it is the quadratization of a low dimensional system
like (2) with a possibly complex right hand side P.
The utility of this comes from the fact that if the em-
bedded system (2) is of low enough dimension (say 2
or 3), then it can be analyzed using graphical tools, and
its behavior understood without the need for extensive
simulations.

In this paper, we do not directly address the mathemat-
ical problem posed in the previous paragraph. Instead,
we use a function-fitting based technique in which im-
portant trajectories of the high dimension system are

generated by simulation, and then a low dimension
model is found that fits a portion of the data. This pro-
cedure involves two heuristics. The first is the selection
of initial conditions for the original model that generate
“important” or representative trajectories. The second
heuristic is to choose a small number of states whose
behavior is considered representative of the overall be-
havior of the original system. Once these choices are
made, a function fit for the right hand side of (2) can be
performed using the trajectory data. We show that by
using tensor algebra that this function fit can be reduced
to solving a large system of linear equations when the
function P is a polynomial of several variables. This
idea was preliminarly presented in [9]. Discovering
governing equations from data by sparse identification
has been published recently in [10], where the main
focus stands into the identification of the underlying
structure of a nonlinear dynamical system from data.

2 Model Reduction Approach

Let us consider a high order nonlinear system de-
scribed by a system of Ordinary Differential Equations
in the state variable z = [z ...zy] € RY

i= f(x). (&)

We assume that we can identify, from physical a priori
knowledge, a subset of the states whose behavior is to
be studied. Let

!

Y= [y ) = oy, ag) i; € [1...N],

(6)

be such a subset of the states. The situation we are

interested in is when n is small, i.e. 2, 3 or possibly 4.

The assumption we make is that the dynamics of each
1; can be written as

y; = fi;(x) = g5(y), (7)

for some function g; which may be of higher order than
Ji;- This is the main content of the conjecture stated in
the introduction; that the role of extra states is to en-
able the realization of the dynamics of the y's using
a function f which is only quadratic. Given this as-
sumption we now outline a function fitting procedure
that finds the parameters of the unknown polynomial
functions g;(y). The function fitting procedure is most
conveniently described using tensor algebra and Kro-
necker product notation. Given a vector x, define the
following hierarchy of Kronecker products [4]

x(l) =
x(2) =TT



where if 2 = [z; zp 3], then 2 @ z = z() =

[#2 2172 2173 Towq T3 ToT3 T3T1 T3To T3], ete.

As is well known, polynomial functions can be repre-
sented as linear operators on tensor product spaces. If
g is a polynomial function of degree m (defined as the
highest degree of all its multinomial terms), then it can
be written as the matrix vector product

gly) = GY,
where
Vo= [y y@ gy, )

where GG is a matrix whose entries correspond to the
coefficients of the multinomial terms in g. We note that
this is not the most compact representation of a polyno-
mial function since the tensors (") have a redundancy
due to the symmetry of multinomial terms. However,
this “non-minimal” representation allows for the use of
very simple notation.

Now the differential equations (7) can be written in
vector form as

y(t) = g(y(t)) = GY (). (10)

Since the relationship between y and Y is linear, we
can determine the entries of G (and consequently g)
by solving systems of linear equations with data for
Y formed from the data for y according to (9). The
procedure can be summarized as follows. Given some
representative trajectories of the original system (5), a
selection of a subset of the states (6), a selection of the
order m, and a set of time points {¢y,...,tr}, collect
the samples

y(tr) ]
“Y(tr)].

¢ = [y(t1) -
= [Y(ty) -

The condition that this data comes from the trajectories
of a system like (10) is equivalent to the matrix equa-
tion

6 = GO.

Thus we determine the system parameters from the lin-
ear least square problem

G = argmin ||¢ — G @2, (11)
where ||.||2 is the Frobenius norm on matrices. To bet-

ter appreciate the dimensions of this least squares prob-
lem, we write out the entries in more detail as

G = argmin

i) - iten) | -

1 1

y(t1) y(tr)
G . .

y™(t) Y™ tr) ]|,

The matrix ¢ has dimensions n x T', while ® has di-
mensions k x T, where

k = Zni, (12)

is the dimension of the vector Y. One critical size pa-
rameter in this fitting problem is m, the order of the
right hand side g of (10). This determines the number
of variables in the problem. The fit error will decrease
monotonically with increasing m. The other size pa-
rameter is 7', the number of trajectory samples taken.
This determines the number of equations in the prob-
lem. In general, the best choice is to use a set of sam-
ples for which the trajectories explore a significant por-
tion of the state space. Since solving very large linear
least squares problems is routine with modern numeri-
cal techniques, it is possible to solve the above problem
for a large range of orders m and number of samples 7.

3 Example: The Circadian oscillations of the
PER/TIM proteins

As an example of biological application of our
method, we have considered hereafter the Drosophila
circadian oscillations in the levels of two proteins PER
and TIM as resulting from the negative feedback ex-
erted by a PER/TIM complex on the expression of the
PER and TIM genes which code for these two pro-
teins. In [2] on the basis of some experimental observa-
tions, the authors have proposed a theoretical model for
the circadian oscillations of the PER and TIM proteins
in Drosophila. They have observed the occurrence of
chaos and birhythmicity by means of bifurcation dia-
grams and locate the different domains of complex os-
cillatory behavior in parameter space. This model has
been largely used in literature to study its complex be-
havior (see [3], [8]).

The model consists of N = 10 state-equations corre-
sponding to the pathways scheme reported in [3] of the
model for circadian oscillations in Drosophila involv-
ing negative regulation of gene expression by a com-
plex between PER and TIM. We will show that the pro-
posed technique yields for this model very good agree-
ment with a 3rd or 2nd order sub-model. The men-
tioned model with all the values used for the parameters
is reported in the Appendix. From their analytical stud-
ies and from biological insight, it is clear that among
the 10 species, only n = 3 are important, the state
variables x1, x5 and x1¢, corresponding to the protein
PER, TIM and the complex PER/TIM. In [2], and in
[8] it has been shown that for vy = 2,v,,; = 0.99
limit cycles can be predicted and that for vg, = 4.8



and v,,; = 0.28 they showed chaos. Hereafter we con-
sider the two setting of parameters. We refer to the first
one as case 1 and to the second one as case 2. For the
case 1 we consider two reduced models, one with two
states (corresponding to the protein PER and TIM
(n = 2) (case 1.a For the second case, in order to get
the chaotic behavior, we consider the three states re-
duced model (m = 3). When n = 3, K, the number of
term in the regressors becomes, form =1 : 8, k(m) =
3,12,39,120, 363,1092, 3279,9840. When n = 2,
K, the number of term in the regressors becomes, foe
m =1:8, K(m) = 2,6,14,30,62, 126, 254, 510.
Running the algorithm, we need a trade off between
the achievable approximation level € and the grade of
complexity of the approximate systems, let us choose
an order m = 5. For m = 1 : 5 in the case 1l.a, the
obtained approximation error E(m) = ||¢ — G¢|| is
E(m) =9.14, 2.09, 0.60, 0.38, 0.28.

Finally, in the case 2 we get E(m) =
12.01, 2.55, 1.58, 1.16, 1.03.

Moreover, let us note that due to the redundancy in
the expression of ®, the problem is rank deficient.
For example, let us consider the case of three states
[y1 Y2 y3]’, then for m = 2, only 9 terms are differ-
ent among the £ = 13 terms of ®, and the correspond-
ing matrix ®'® of dimension k + 1 X k + 1 has rank
10. Forn = 3and m = 1,...,5 the effective rank is
4,10, 20, 35, 56. However, since we are solving a least
squares problem, the rank deficiency does not funda-
mentally complicate the problem.

For m = 5, we report a portion of the data (the first
300 samples) for ¢ = 1, n and the corresponding fitting
system, in the case 1.a, Fig. 1 and in the case 2 in Fig.
2.
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Figure 1. case 1.b Sample trajectories of the original system
(solid lines) and the reduced 3’rd order system (dots)

Figure 2. case 2 Sample trajectories of the original system (solid
lines) and the reduced 3’rd order system (dots)



