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Abstract
Typically, the performance of a control design task is

specified in terms of an output response to a given in-
put. This is also the case for multivariable plants, where
for clarity of performance specification and design it
remains desirable to consider the inputs and outputs in
pairs. Regardless of the structure and internal coupling
of the plant, it is convenient to establish if decentralized
control is capable of meeting design specifications: the
control structure will be easy to implement, economic
(less programming burden upon implementation), and
may provide physical insight. In line with this, the
analysis and design of decentralized controllers using
the relative gain array (RGA) and the multivariable
structure function (MSF) are presented for the general
multivariable case. It is shown that the RGA matrix
can be expressed in terms of the MSF. Theoretical re-
sults are drawn for a general n×n plant, with an exam-
ple from electrical power systems included to illustrate
key concepts.
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1 The Relative Gain Array Matrix
The relative gain array (RGA) matrix, proposed by

[Bristol, 1966], is defined as:

Λ
(
G(s)

)
= G(s)×

(
G(s)−1

)T
, (1)

where× denotes an element-by-element multiplication
and G(s) is an n×n square transfer matrix:

G(s) =


g11(s) g12(s) . . . g1n(s)
g21(s) g22(s) . . . g2n(s)

...
...

. . .
...

gn1(s) gn2(s) . . . gnn(s)

 . (2)

Historically, the use of the RGA matrix has been fo-
cused on decentralized (diagonal) control. In particu-
lar, the following rules regarding the pairing of input-
output control channels are employed [Skogestad and
Postlethwaite, 2005]:

i. An input-output paring such that the diagonal ele-
ments of the RGA matrix are close to one is prefer-
able since this paring is related with a diagonal
dominant plant.

ii. Avoid input-output parings which generate diag-
onal negative elements on the RGA matrix with
s = 0. This condition is closely related to systems
with lack of integrity; i.e., a system which can-
not maintain stability if one of the diagonal closed
loops is open.

iii. High positive values in the diagonal elements of
the RGA matrix indicate difficulty for designing
diagonal controllers.

RGA has proved to be a valuable tool in the selec-
tion of input-output pairing for diagonal control design.
In general RGA can be interpreted in the frequency
domain, but it is commonly used to evaluate the cou-
pling of input-output pairings at steady state [Bristol,
1966; Grosdidier, Morari and Holt, 1985]. However,
it has been observed that rule i should be applied with
s = jωBW , where ωBW is the crossover frequency of



the open loop system [Mc Avoy, Arkun, Chen, Robin-
son and Schnelle, 2003; Skogestad and Postlethwaite,
2005].
Even when the use of the RGA matrix is widely ac-

cepted, developments of the key ideas which are con-
tained within the theoretical foundations of the RGA
matrix have not been fully analyzed. The main idea
around the RGA matrix is to assess the effect a con-
troller of each output variable would have on a specific
open loop variable. In fact, the ij-th element of matrix
G(s) may be defined as follows:

λij =
gij(s)

ĝij(s)
, (3)

where ĝij(s) is the resulting open loop response be-
tween the j-th input and the i-th output with all the re-
maining outputs set under the influence of a diagonal
controller of appropriate dimensions.
It would seem logical to ask what would be the sta-

bility and robustness characteristics of such a con-
troller. Some effort in this direction was presented in
[Grosdidier, Morari and Holt, 1985; Chiu and Arkun,
1990; Skogestad and Postlethwaite, 2005], where the
integrity of the control system in relation with the RGA
matrix was investigated. However, the RGA matrix
does not play any role in the design stage of the con-
troller. Moreover, its use has been restricted to those
systems which can be made diagonal dominant by the
simple commutation of input-output parings.
In a completely independent fashion, a multi-

variable design framework called Individual Chan-
nel Analysis and Design (ICAD), which deals
with the design of diagonal controllers for mul-
tivariable plants, was proposed in the early 90s
[O’Reilly and Leithead, 1991]. Although not
widespread, this framework proved useful in solv-
ing difficult control problems associated to non-
diagonally dominant, unstable, non-minimum phase
and non-square plants [Licéaga-Castro, Licéaga-Castro
and Ugalde-Loo, 2005; Licéaga-Castro, Licéaga-
Castro and Amézquita-Brooks, 2005; Licéaga-Castro,
Ramı́rez-España and Licéaga-Castro, 2006; Licéaga-
Castro, Licéaga-Castro, Ugalde-Loo and Navarro-
López, 2008; Licéaga-Castro, Amézquita-Brooks and
Licéaga-Castro, 2008; Ugalde-Loo, 2009].
ICAD allows the use of classical SISO robustness

margins (phase and gain margin) for MIMO control
systems. The key component of the ICAD framework
is the Multivariable Structure Function (MSF) which
illuminates several important issues of the open loop
system. In particular, it allows

• elucidating the minimum phase conditions of the
transmission zeros;

• measuring the cross-coupling between input-
output pairs;

• using the Nyquist stability criterion, and all its
associated robustness margins, for measuring the
possibility of direct decoupling of the system.

It is clear that a close relationship between the MSF
and the RGA matrix should exist since through both
tools appropriate input-output parings can be defined.
In the next sections this relation will be fully revealed
and some common features will be analyzed. How-
ever, it should be noticed that the most important fea-
tures of the MSF are not related with the analysis of the
open loop system. As a matter of fact, the MSF plays
a crucial part both in the controller design process and
in the subsequent robustness assessment of the closed
loop control system.

2 The Multivariable Structure Function
Consider an n×n system G(s) with a diagonal con-

troller matrix K(s):

Y(s) = G(s)U(s),
U(s) = K(s)E(s),
E(s) = R(s)− Y(s),

(4)

where R(s) is a reference vector. The output and input
signal vectors are defined, respectively, as follows:

Y(s) =
[
y1(s) y2(s) . . . yn(s)

]T
,

U(s) =
[
u1(s) u2(s) . . . un(s)

]T
.

The closed loop dynamics of (4) are given by:

Y(s) = G(s)K(s)
(
I + G(s)K(s)

)−1R(s)
= H(s)R(s).

(5)

The individual channel concept is set up to investigate
the cross-coupling of a particular group of input-output
variables against the remaining variables. That is, sys-
tem G(s) may be partitioned as

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
, (6)

with

Y(s) =

[
Y1(s)
Y2(s)

]
, K(s) =

[
K11(s) 0

0 K22(s)

]
,

R(s) =

[
R1(s)
R2(s)

]
, E(s) =

[
E1(s)
E2(s)

]
.

(7)

A block diagram depicting the system described by (6)
and (7) is shown in Figure 1.
For the following procedure the Laplace operator is

dropped for convenience. According to Figure 1,

Y1 = G11U1 + G12U2.

Notice that U2(s) may also be written as

U2 = X2δ2,

where

δ2 = G21U1.
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Figure 1. Block diagram representation of a partitioned multivari-
able control system with a diagonal controller.
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Figure 2. Equivalent control system using individual channel rep-
resentation.

X2(s) can be easily obtained noting that

U2 = K22E2,
E2 = R2 − (G22U2 + δ2).

By using the superposition theorem and considering
R2(s) = 0, then

U2 = −K22(δ2 + G22U2).

A rearrangement of the previous expression by using
the “push through” rule [Helton, Stankus and Wavrik,
1998] yields

U2 = −K22(I + G22K22)−1δ2.

Considering this, Y1(s) can be rewritten as

Y1a = G11U1 −G12K22(I + G22K22)−1G21U1,

where Y1a(s) was introduced to remark that R2(s) =
0. Since the closed loop of the diagonal open loop
transfer matrix G22(s)K22(s) can be expressed as

H2 = G22K22(I + G22K22)−1,

it is clear then that

Y1a =
(
I−G12G−1

22 H2G21G−1
11

)
G11K11E1,

or, more compactly,

Y1a = (I− Γ1)G11K11E1 = C1E1, (8)

where

C1(s) = (I− Γ1(s))G11(s)K11(s) (9)

represents Individual Channel 1 and models the open
loop response of the output variables Y1(s) under the
fact that variables Y2(s) operate in closed loop with
controller K2(s). The key element of the preceding
analysis is the MSF Γ1(s), defined as

Γ1 = G12(s)G22(s)−1H2(s)G21(s)G11(s)−1, (10)

which will be shown in the following Section to be
closely related to the RGA matrix.
In order to elucidate the effect of R2(s) over Y1(s),

consider that the control loop over E1(s) is open. This
implies that

E2(s) = R2(s)− Y2(s).

Thus,

U2(s) = K22(s)
(
I + G22(s)K22(s)

)−1R2(s),
= G22(s)−1H2(s)R2(s).

This rearrangement is represented in the block diagram
of Figure 2, where the corresponding equations for In-
dividual Channel 2 can be derived by simple symmetry.
In particular:

Γ2(s) = G21(s)G11(s)−1H1(s)G12(s)G22(s)−1,

H1(s) = G11(s)K11(s)
(
I + G11(s)K11(s)

)−1
.

The importance of MSFs Γi(s) becomes clear when,
for instance, Γ1(s) = 0. This situation implies that
the open loop response of variables Y1(s) are equal to
G11(s)K11(s)E1(s) if R2(s) = 0. That is, subsystem
G11(s) is not coupled with subsystem G22(s) through
controller K11(s). This indicates that it is possible to
design K11(s) on the basis of G11(s) only.
The assumption that R2(s) = 0 can be lifted with no

real consequences provided that the closed loop sensi-
tivity of G11(s)K11(s) is able to reject the perturba-
tion G12(s)G22(s)–1H2(s)R2(s). Even if that is not
the case, the stability of the system is not compromised
given that H2(s) is stable. Therefore, MSFs Γi(s) ef-
fectively measure the coupling of the system, with a
high value of ||Γi(jω0)|| (using an appropriate norm)
indicating a high coupling between variables Y1(s) and
Y2(s) at frequency ω0. Such a notion of coupling al-
lows the introduction of a clear measurement of cross-
coupling.
A full treatment of the ICAD framework is out of the

scope of this article; however, it will be shown that the
MSF is an extension of the RGA matrix.

3 Relation between the RGA matrix and the MSF
The contexts in which the RGA matrix and the MSF

were derived are different: while the RGA matrix
was obtained for open loop plant analysis [Bristol,
1966], the MSF was established as a means to measure



the robustness of the closed loop system in the con-
text of control design [O’Reilly and Leithead, 1991].
Nonetheless, equivalent assumptions may be consid-
ered for both.
For instance, when calculating λij , the ij-th element of

the RGA matrix Λ
(
G(s)

)
defined in (3), it is assumed

that all outputs, excluding yi, are perfectly controlled
using all inputs, excluding uj . In this context the open
loop response of the free input-output variables yi and
uj is denoted as ĝij(s). Such perfect control assump-
tion can be also made within the ICAD framework. In
this case, it is assumed that variables Y2(s) are per-
fectly controlled via inputs U2(s), which is equivalent
to assuming Y2(s) = R2(s). In this situation the input-
output response between references R2(s) and outputs
Y2(s) is given by Y2(s) = H2(s)R2(s), since the vari-
ables Y1(s) and inputs U1(s) are operating in open
loop (see Figure 1). Therefore, Y2(s) = R2(s) is
equivalent to H2(s) = I.
Nevertheless, whilst the MSF and the individual chan-

nel definitions allow for multivariable individual chan-
nels, or multi-channels [Leithead and O’Reilly, 1992],
the RGA matrix elements λij consider only scalar
“free” input-output variables. Employing such a con-
sideration with scalar input u1 and output y1, for in-
stance, is equivalent to assuming that Y1(s) = y1(s)
and U1(s) = u1(s). Under these conditions and since
U1(s) = K11(s)E1(s), it is easy to show from (8) that

y1(s) =
(
1− γ1(s)

)
g11(s)u1(s),

where

γ1(s) = G12(s)G22(s)−1G21(s)g11(s)−1

is the scalar MSF which relates Individual Channel 1
and the multi-channel formed by all the remaining out-
puts. The relationship between λ11 and γ1(s) is finally
revealed by noting that

ĝ11(s) =
(
1− γ1(s)

)
g11(s).

Thus,

λ11 =
g11(s)

ĝ11(s)
=

1(
1− γ1(s)

) . (11)

The previous analysis may be generalized for the re-
maining elements of the RGA matrix by simple sym-
metry. In general, the ij-th element of the RGA matrix
may be written as

λij =
1(

1− γij(s)
) . (12)

where γij(s) is the MSF which relates the i-th output
with the j-th input assuming that all remaining out-
puts are controlled perfectly with the remaining in-
puts. MSF γij(s) can be obtained by rearranging the
columns (or rows) of transfer matrix G(s) into Ĝ(s) so

that the i-th output and the j-th input of G(s) become
the first output and the first input of Ĝ(s). This way,

γij(s) = Ĝ12(s)Ĝ22(s)−1Ĝ21(s)ĝ11(s)−1,

which effectively consists of rearranging the inputs and
output pairs of a diagonal controller.
For instance, consider a simple 2×2 control system;

i.e., Gij(s) = gij(s), with i, j = 1, 2. In this case,

γ11(s) =
g12(s)g21(s)

g11(s)g22(s)
.

It is known that for a 2×2 system [Skogestad and
Postlethwaite, 2005],

λ11 =
1(

1− g12(s)g21(s)

g11(s)g22(s)

) . (13)

For systems of higher order [Grosdidier, Morari and
Holt, 1985; Skogestad and Postlethwaite, 2005],

λii =
gii(s) det Gii

det G(s)
. (14)

where Gii is the minor of the ii-th element of G(s).
Therefore, it follows from (12) and (14) that

γii(s) =
λii − 1

λii
= 1− det G(s)

gii(s) det Gii
. (15)

The off-diagonal elements of the RGA matrix Λ
(
G(s)

)
can be related with the MSF by swapping the appropri-
ate rows (or columns) in G(s).
The previous result sheds some light regarding the na-

ture of the MSF. The individual channels considering
the perfect control condition and a scalar output for
y1(s) may be written as

ci(s) = kii(s)gii(s)
(
1− γi(s)

)
.

Then, considering (15) and Hi(s) = I yields:

ci(s) = kii(s) ·
det G(s)

det Gii
. (16)

Equation (16) reveals the relationship between the
MSF and the RGA matrix within the ICAD context.
However, it is important to emphasize that whereas the
RGA matrix has only been used to define input-output
pairs selection as a previous step to diagonal control
design, the MSF has been successfully applied directly
in the control design procedure.

4 Differences between the RGA and the MSF
The main differences between the RGA matrix and the

MSF are summarized as follows:



• The inclusion of the controller effects in the MSF
allows its use as a measure of closed loop robust-
ness.

• The RGA and the MSF have an interpretation in
the frequency domain. However, the MSF analy-
sis (magnitude and phase) is crucial to determine
the existence of stabilizing controllers and their re-
quirements [O’Reilly and Leithead, 1991].

• The MSF is not necessarily a scalar function.
This allows using the MSF to measure the cross-
coupling between arbitrary groups of output-input
pairings. This is of great significance in processes
where it is not possible to find decoupled scalar
input-output pairs, but where decoupled groups of
such pairings exist. For instance in airplanes the
variables relating the longitudinal and horizontal
dynamics are both highly coupled systems which,
nonetheless are considered as decoupled among
them [Cook, 2012].

5 Illustrative Example
In order to illustrate the results presented in Section 3

and to address the points from Section 4, consider the
system described by Figure 3. It corresponds to a syn-
chronous generator feeding into a large system (repre-
sented by an infinite bus) via a tie-line system including
a shunt compensator in the form of a Static VAr Com-
pensator (SVC). The main application of an SVC is to
provide dynamic reactive power support to enable ef-
fective voltage regulation and to enhance transient sta-
bility [Aree and Acha, 1999]. However, if a damp-
ing control loop is included, the device is also capable
to provide damping for electromechanical oscillations
[Mithulananthan, Canizares, Reeve and Rogers, 2003].
Figure 4 shows a block diagram of the system.
The synchronous machine – SVC system can be rep-

resented as the 3×3 system shown in Figure 4 [Ugalde-
Loo, Acha and Licéaga-Castro, 2010]. The transfer
matrix representation of such a system has the form ∆ω(s)

∆et(s)
∆VSV C(s)

 =

g11(s) g12(s) g13(s)
g21(s) g22(s) g23(s)
g31(s) g32(s) g33(s)

∆Pm(s)
∆Efd(s)
∆α(s)


(17)

or, more compactly,

YSV C(s) = GSV C(s)USV C(s), (18)

where GSV C(s) is the transfer matrix. The indi-
vidual elements of GSV C(s) can be explicitly found
in [Ugalde-Loo, Acha, Licéaga-Castro and Licéaga-
Castro, 2008]. The synchronous machine parameters
and operating condition are provided in [Ugalde-Loo,
Acha and Licéaga-Castro, 2010].
System (17) is stable and has minimum phase trans-

mission zeros. In addition, it has been shown in
[Ugalde-Loo, Acha and Licéaga-Castro, 2010] that a
stabilizing diagonal controller for this system is given
by:
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Figure 3. Synchronous generator – SVC system [Ugalde-Loo,
Acha and Licéaga-Castro, 2010].
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Figure 4. Block diagram of the synchronous generator – SVC sys-
tem [Ugalde-Loo, Acha and Licéaga-Castro, 2010].

KSV C = diag
[

63(s+ 3.5)
(
s2 + s+ 30

)
s2(s+ 6)(s+ 5)

, ...

107.5(s+ 0.43)

s
,

400

s

] (19)

Calculation of the RGA matrix of system (17) evalu-
ated at s = 0 yields

Λ
(
GSV C(s)

)
=

 3.43 −1.88 −0.55
−2.82 5.31 −1.48
0.38 −2.42 3.04

 , (20)

from where it can be seen that the selected input-output
pairings are adequate (according to rule i in Section 1).
It can be concluded that the compensator has no effect
on the steady state coupling.
The input-output paring can be also investigated us-

ing the MSF. In addition, within the ICAD framework
it is usual to evaluate the structural robustness by mea-
suring the closeness of the Nyquist plot of the MSF to
the complex point (1, 0). In short, this allows measur-
ing the robustness of the individual channels to become
minimum-phase due to a controller K(s). A general
discussion on this regard can be found in [Leithead and
O’Reilly, 1992].
In order to measure structural robustness, the Bode

plots of the negative of the MSFs are used (i.e.,
−γii(s), i = 1, 2, 3), which allows classical robustness
margins to be considered. These plots are shown in
Figure 5, with a perfect control of the remaining vari-
ables being assumed. The input-output pairing should
be made so that the diagonal MSFs, γii(s), have the
lowest possible gain. Recall that a low coupling at fre-
quency ω0 is defined as ||γii(jω0)|| ≈ 0.
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Figure 5. Bode diagrams of−γii(s) (i = 1, 2, 3).

For comparison, consider the Bode diagram of
−γ12(s), which would result if input 1 was paired with
output 2. This is shown in Figure 6. The plot suggests
that paring input 1 with output 2 results in Individual
Channel 1 being highly coupled with Multi-channel 2-
3; thus, this configuration is not recommended. Further
examination of the open loop MSFs is omitted in this
paper due to space limitations. However, the results are
in line with the RGA matrix (20).
Figure 5 shows that although the best input-output

pairing selection has been already made, the system
lacks structural robustness at low frequencies due to the
closeness of the Bode plot to the critical phase and gain
values (i.e., 180◦ and 0 dB), especially in γ11(s).
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This is where the MSF has advantages over the RGA
matrix analysis. For a system to have adequate closed
loop robustness the controller must not change the gen-
eral shape of the Nyquist plot of the diagonal MSFs of
the open loop system. The reason is that if the num-
ber of encirclements to the point (1, 0) in the Nyquist
plot of the MSF changes due to the controller, then the
individual channels-zero structure in turn changes and
additional non-minimum phase zeros may be induced.
In order to assess this fact, the Nyquist plots of the
open loop MSFs γii(s) (with i = 1, 2, 3) are shown
in Figure 7. The Nyquist diagrams of the correspond-
ing MSFs considering the effects of controller (19) are
also shown (these MSFs can be calculated according to
equation (10)).
Clearly the effect of controller (19) on the MSFs

does not affect the structural robustness (closeness to
the point (1, 0)). However, the coupling of individual
channel 3 with Multi-channel 1-2 has increased. The
interpretation of this result must be done carefully, as it
does not mean that the closed loop will have increased
cross-coupling. Actually, this means that by control-
ling y1(s) and y2(s) through k1(s) and k2(s), the re-
maining open loop system (i.e., output y3(s) with in-
put u3(s)) will now be more coupled. However, this
coupling can be managed through k3(s) using the full
individual channel transfer function (i.e., considering
k1(s) and k2(s)). On the other hand, the similarity of
γ11(s) and γ22(s) with and without considering the ac-
tual controllers allows designing k1(s) and k2(s) al-
most as SISO systems considering the corresponding
H(s) system as an identity (i.e., perfect control on the
other variables). This clear assessment of robustness
and coupling during the controller design process can-
not be made with the RGA matrix alone.

6 Conclusion
The results presented in this paper fall short to fully

appreciate the use of the ICAD framework. However,
the analysis sheds light into the relationship between
the MSF and the RGA matrix and allows visualizing
how the MSF covers aspects that fall beyond the RGA
matrix analysis. This is particularly clear in the con-
trol system design process. The MSF can be effec-
tively considered an extended version of the RGA ma-
trix which allows to consider the effect of specific con-
trollers to the robustness of the system and assess the
cross-coupling between groups of input-output pairs –
among other applications.
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