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Abstract
In the paper a way to solve an LQ-problem for a

Josephson junction array with a common LRC-load
is proposed. The cases of identical and non-identical
Josephson junctions are considered. The solution en-
sures phase stabilization of Josephson current in every
junction. The results are obtained using computer simu-
lation in Jupyter Notebook and MATLAB.
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1 Introduction
A Josephson junction is a possible way to construct

a quantum bit (qubit) [Nielsen and Chuang, 2000]. A
Josephson qubit can be presented as a non-linear res-
onator. There are three types of superconducting qubits
that are distinguished by how the non-linear resonator is
constructed, namely phase, flux and charge qubits. Phase
and flux qubits are sensitive to the phase value of the
Josephson current [Geller, 2006; Martinis and Osborne,
2004].

To perform quantum computations it is necessary to
create a chain or an array of qubits. Dynamics of Joseph-
son junctions arrays was studied in detail in a signif-
icant number of works, e.g., [Hens, Pal, Dana, 2015;
Kuznetsov et al., 2018; Vlasov and Pikovsky, 2013]. Dy-
namics of identical non-linear oscillators network was
studied in [Mishra A. et al., 2015].

Control of one Josephson junction was investigated in
[Borisenok, 2015]. The Josephson junctions array may
be presented as a multidimensional controlled system
with periodic non-linearities. Dynamics of such sys-
tems was considered in [Smirnova, Proskurnikov, Utina,
2019].

In [Vlasov and Pikovsky, 2013] the authors show how
the phases depend on the global variables of an electrical
circuit: the phases are not stable and grow up with time.

In the current paper an approach to stabilization of
the Josephson junctions array phases is suggested. It is
based on solution of the optimal control problem for the
Josephson junctions array in terms of global variables.

2 Models description
2.1 Identical Josephson junctions array model

The identical junctions can be described by the sys-
tem of ordinary differential equations (ODE system) in
dimensionless global variables [Kuznetsov et al., 2018;
Vlasov and Pikovsky, 2013]:

ẋi = I − sinxi − εxN+2

ẋN+1 = xN+2

ẋN+2 = I − γxN+2 − ω2
0xN+1−

− 1
N

∑N
i=1 sinxi

 (1)

where xi is the phase of the i-th junction; N is the total
number of junctions; xN+1 is the load capacitor charge;
I is the external current; ε, γ and ω2

0 are dimensionless
parameters of the parallel RLC-load. Initial conditions
for ODE system are x0 = (0, . . . , 0, 0.5, 0)T .

An equivalent circuit for the identical Josephson junc-
tions array with an RLC-load connected in parallel is
presented in Fig. 1.

The numerical simulation for solution of (1) is given in
Fig.2. The simulation was made for 200 junctions array,
following to [Vlasov and Pikovsky, 2013].

From simulation follows that identical junctions are in
synchronous state.

Also, the simulation for different initial values of
phases was carried out. The initial values of phases are
in range [0; 10]. Simulation results are presented in the



CYBERNETICS AND PHYSICS, VOL. 10, NO. 3, 2021 139

Figure 1. Equivalent circuit for the identical Josephson junction array
with the common RLC load [Wiesenfeld et al.]

Figure 2. Identical Josephson junctions array simulation results. (a)
Values of the parameters are I = 1.2, ε = 0.5, ω2

0 = 1.2,
γ = 1. (b) Values of the parameters are I = 2.5, ε = 0.5,
ω2
0 = 1.2, γ = 1.

Fig. 3. As follows from the graphs, Josephson junctions
are in asynchronous state.

Figure 3. Identical Josephson junctions array simulation results for
different initial values of the phases. 15 phases of 200 are shown. (a)
Values of the parameters are I = 1.2, ε = 0.5, ω2

0 = 1.2,
γ = 1. (b) Values of the parameters are I = 2.5, ε = 0.5,
ω2
0 = 1.2, γ = 1.

2.2 Non-identical Josephson junctions array model
The ODE system describing non-identical junctions is

[Kuznetsov et al., 2018; Vlasov and Pikovsky, 2013]:

ẋi = I − (1 + ξi) sinxi − εxN+2

ẋN+1 = xN+2

ẋN+2 = I − γxN+2 − ω2
0xN+1−

− 1
N

∑N
i=1(1 + ξi) sinxi

 (2)

where the values have the same meaning as in (1) and
ξi are the parameters characterizing the difference of the
critical currents from the nominal value. An equivalent
circuit for the non-identical Josephson junctions array
with a parallel RLC-load is presented in Fig. 4.

Figure 4. Equivalent circuit for the non-identical Josephson junction
array with the common RLC load [Wiesenfeld et al.]

Figure 5. Non-identical Josephson junctions array simulation results.
10 phases of 200 are shown. (a) Values of the parameters are I = 1.2,
ε = 0.5, ω2

0 = 1.2, γ = 1, ξi ∈ [−1; 1]. (b) Values of
the parameters are I = 2.5, ε = 0.5, ω2

0 = 1.2, γ = 1,
ξi ∈ [−1; 1].
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The simulation of (2) is presented in the Fig. 5. The
simulation was done for an array with 200 junctions, fol-
lowing to [Vlasov and Pikovsky, 2013].

3 Problem statement and its solution
Let us consider systems (1) and (2) in general form and

expand them with a control function:

ẋ = f(x) +Bu+ Ī = F (x, u) + Ī , (3)

where x = (x1, . . . , xn)T , x ∈ Rn,
u = (u1, . . . , ur)

T , u ∈ Rr, r ≤ n,
f = (f1, . . . , fn)T , f ∈ C∞(Rn × Rr;Rn);
Ī = (I, . . . , I, 0, I)T , F (0, 0) = 0,

B =


1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0 0
0 0 . . . 0 0 0
0 0 . . . 0 0 1


Problem. Find a pair of the functions x(t), u(t), which

satisfy to the system (3) and given initial conditions:

x0 = (x10, . . . , x
n
0 ). (4)

u(t) is the optimal control for the linearized system (3).
Problem solution. Let us consider ODE systems (1)

and (2). These systems contain significant non-linearity.
Thus for the start we make Taylor expansion and keep
only linear terms.

The linearized systems have general form

ẋ = Ax+Bu, (5)

where A is the matrix of the first approximation sum-
mands which has the form

A =


−(1 + ξ1) . . . 0 0 −ε

. . . . . . . . . . . . . . .
0 . . . −(1 + ξN ) 0 −ε
0 . . . 0 0 1

− 1+ξ1
N . . . − 1+ξN

N −ω2
0 −γ

 (6)

The case ξi = 0, i = 1, ..., N corresponds to an iden-
tical junctions array.

Test of the controllability conditions for these systems
shows that

rankS = n, (7)

where S = (B,AB, . . . , An−1B), n is a dimension of
the system.

Now we study a stationary Linear-Quadratic problem
(LQ-problem) for (5), following to [Afanas’ev et al.,
1989].

LQ-problem. Find a pair of the functions x(t), u(t),
which satisfy to the system (5) over the infinite time in-
terval and minimize the quality criterion

J(u) =

∫ ∞
0

[xT (s)N2x(s) + uT (s)N3u(s)]ds,

N3 > 0, N2 > 0, (8)

where matrices N2 of dimension [n × n] and N3 of
dimension [r × r] are positively defined.

The required control function u(t) that satisfies (8) is
defined as

u(x) = −N−13 BTPx, (9)

where matrix P > 0 solves the algebraic Riccati equa-
tion

ATP + PA+N2 − PBN−13 BTP = 0. (10)

The Riccati equation (10) is solved with MATLAB
Control Toolbox. We substitute the solution of the Ri-
catti equation P to (9) to obtain the control functions. At
the last step we make substitution of the obtained control
functions to the initial non-linear systems.

4 Numerical simulation results
Simulation was done for controlled systems of the

identical and non-identical Josephson junctions arrays.
Initial conditions (4) for ODEs systems are x0 =
(0, . . . , 0, 0.5, 0)T . We considered two values of the ex-
ternal current, namely I = 1.2 and I = 2.5. Values of
parameters ξi for non-identical Josephson junctions ar-
ray vary in range [−1, 1]. Parameters of the RLC-load
are ε = 0.5, γ = 1, ω2

0 = 1.2 for both cases. The pa-
rameters are taken from [Kuznetsov et al., 2018; Vlasov
and Pikovsky, 2013]. We have chosen matrices N2 and
N3 to be identity matrices of the corresponding sizes.
Simulation results are presented in Fig. 6, 7.

Figure 6. The simulation results for solution of the control problem
for Identical Josephson junctions array. Values of the parameters are
ε = 0.5, ω2

0 = 1.2, γ = 1. (a) I = 1.2. (b) I = 2.5.
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Figure 7. The simulation results for solution of the control problem
for non-identical Josephson junctions array. The first 15 junctions of
200 are shown. Values of the parameters are ε = 0.5, ω2

0 = 1.2,
γ = 1, ξi ∈ [−1; 1]. (a) I = 1.2. (b) I = 2.5.

In case of different initial phase values for identical
Josephson junctions array, these values are chosen in
range [0, 10]. To determine the required external current
value, numerical experiments were carried out. Results
are presented in Fig. 8

Figure 8. The simulation results for solution of the control problem
for identical Josephson junctions array with different initial values of
the phases. The first 15 junctions of 200 are shown. Values of the
parameters are ε = 0.5, ω2

0 = 1.2, γ = 1. (a) I = 1.2(b)
I = 1.738

Analysis of the simulation results

1. The solution of the control problem ensures stabi-
lization of the phase values for identical and non-
identical junctions arrays.

2. Dependence of the phase values from external cur-
rent is detected.

3. In the case of identical junctions with different ini-
tial values of the phases the synchronization effect
is detected (see Fig. 8). When external current
I < 1.738 phases tend to two different values.
Phases tend to one synchronous state with an ex-
ternal current I ≥ 1.738.

Numerical simulation was performed in Jupyter Note-
book.

5 Summary
In this article an optimal control approach was applied

to solving the control problem for the identical and non-
identical Josephson junctions arrays. The results of the
computer simulation show that the chosen method pro-
vides stabilization of the phases for both cases. The pro-
posed solution may be useful in quantum computer con-
struction based on the phase qubits [Geller, 2006; Marti-
nis and Osborne, 2004].

6 Discussion
In this paper problems of the possibility of measuring

the whole state vector and applying of the optimal con-
trol method to a high dimension of the system are not
considered. These issues will be studied in the future
works.
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