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Abstract
Control problems for distributed systems, described

by parabolic PDEs, are considered. The goal of the
study is to develop an adaptive strategy including on-
line parameter identification for efficient control of
the systems. The developed strategy is based on the
method of integrodifferential relations, a projective ap-
proach, and a suitable finite element technique. An
adaptive control algorithm with predictive estimates of
the desired output trajectories is proposed and its spe-
cific features are discussed.
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1 Introduction
The design of adaptive control strategies for dynamic

systems with distributed parameters has been actively
studied in recent years. Processes such as heat trans-
fer, diffusion, and convection are part of a large va-
riety of applications in science and engineering. The
theoretical foundation for optimal control problems
with linear partial differential equations (PDEs) and
convex functionals was established in [Lions, 1971].
In [Tao, 2003], some common and efficient adaptive
control approaches, including model reference adaptive
control, adaptive pole placement control, and adaptive
backstepping control are presented and analyzed. The
book [Krstic and Smyshlyaev, 2010] introduces a com-
prehensive methodology for adaptive control design of
parabolic PDEs with unknown functional parameters,
including reaction-convection-diffusion systems ubiq-
uitous in chemical, thermal, biomedical, aerospace, and
energy systems.
Different approaches to discretization of dynamical

models with distributed parameters are developed to

reduce the original initial-boundary value problem to
an ODE system. It is worth noting the variational and
projection methods used to solve control problems for
such systems. The method of integrodifferential rela-
tions (MIDR) is proposed in [Kostin and Saurin, 2006]
for the optimal control design of elastic beam motions.
Variational principle on the basis of the MIDR are ap-
plied in [Aschemann et al, 2010] to parabolic PDE sys-
tems. A projective approach is developed in the frame
of the MIDR for a heat transfer system in [Rauh et al,
2010]. In the paper this approach and FEM technique is
applied to design an adaptive control strategy including
online parameter identification and predictive estimates
of the desired output trajectories.

2 Statement of the control problem
Consider a one-dimensional controlled process in a

rod with the lengthL described by the following par-
abolic system of PDEs with boundary and initial con-
ditions:

ξ = q + λθ′ = 0,

q′ + κ1θ̇ + κ2θ = a(x)u(t) + b(x)v(t),

q(0, t) = 0, q(L, t) = 0,

θ(x, 0) = θ0(x) .

(1)

Hereθ(x, t) andq(x, t) are the state variables;λ, κ1, κ2

are some material coefficients;u is the control input,v
is the function of external disturbances;θ0, a, andb are
known functions of the spatial coordinatex. The dotted
symbols denote the partial derivatives with respect to
the timet , and the primed symbols stand for the partial
derivatives with respect to the coordinatex .
We assume thatx = zd, 0 ≤ zd ≤ L, denotes the out-

put position of the system. The goal of the control strat-
egy is the computation of the control inputu(t) such



that the outputθ(zd, t) coincides with a sufficiently
smooth profileyd(t). To solve the initial-boundary
value problem , we apply the MIDR, in which the lo-
cal equalityξ = 0 and initial conditions are replaced by
integral relations, whereas the first equation and bound-
ary conditions are satisfied exactly in (1).

3 Discretization algorithm
Let us eliminate the functionq taking into account the

first equation and boundary conditions atx = 0 in (1)
as follows

q(x, t) =

x∫
0

[ a(z)u(t) + b(z)v(t)−

κ1θ̇ − κ2θ ] dz
(2)

and define a space mesh with the nodes:x0 = 0, xM =
L, 0 ≤ xj−1 < xj , Ij = (xj−1, xj), j = 1, . . . ,M .
To find an approximate solution of the problem (1), the
function θ is approximated by piece-wise polynomial
space splines

θ ∈ S(N+2)
w = { θ(t, x) :

θ =
N∑

i=0

ϑij(t) (x/L)j
,

x ∈ Ii, i = 1, . . . ,M ;

θ ∈ C0, x ∈ [0, L] } ,

ϑ(t) = {ϑ10, ϑ1, . . . , ϑM} ,

ϑi = {ϑi1, . . . , ϑi,N} , i = 1, . . . ,M ,

(3)

whereϑ(t) is the vector-function defining the unknown
state variableθ .
A projective approach is used to reduce the original

PDE system to a system of ODEs with initial condi-
tions in the form

L∫
0

ξ(x, ϑ, u, v)χ(x)dx = 0,

q(L, ϑ, u, v) = 0,

L∫
0

[ϑ(x, ϑ(0))− ϑ0(x)]χ(x)dx = 0

∀χ ∈ S(N)
χ = { χ(x) : χ =

N−1∑
i=0

χijx
j/Lj ,

x ∈ Ii, i = 1, . . . ,M } .

(4)

Hereξ is obtained by substituting relations (2) and (3)
in (1). The following integral error is proposed to esti-
mate the quality of this approximation

∆ = Φ/Ψ, Φ =

T∫
0

L∫
0

ϕ(t, x)dxdt,

Ψ =

T∫
0

L∫
0

ψ(t, x)dxdt,

ϕ =
ξ2

2
, ψ =

(λϑ′)2

2

(5)

4 Adaptive control strategy
The proposed adaptive control strategy takes into ac-

count a sequence of time stepst ∈ [tk−1, tk], tk =
ktc. At the initial time the vectory = {y1, . . . , yNy

}
of measurementsyi = θ(t, zy

i ), zy
i ∈ [0, L], i =

1, . . . , Ny, and a valuev1 for the function of exter-
nal disturbancesv(t) are given. Using the current
vectory(tk−1), identified beforehand external function
vk(t) = const, and the desired profileyd(t), the control
uk(t) = const is found in thek-th step by the following
minimization

u∗k = arg min
uk


tk+tp∫
tk

∆y2dt

 ,

∆y = θ(t, zd, uk, vk)− yd(t)

(6)

and applied to the system at the beginningt = tk of
the time step. At the end of this step, the vectory(tk)
is measured and used together with the valuesy(tk−1)
anduk to produce a new valuevk+1 as follows

v∗k+1 =

arg min
vk


Ny∑
i=1

(θ(tk, z
y
i , uk, vk)− yi(tk))2

 .
(7)

After that, the current vectory(tk−1) and the identi-
fied functionvk+1 are used as the initial data for the
next step. The control (tc ) and predictive (tp ) hori-
zons are chosen to guarantee the stability of the control
process.

5 Numerical results
Consider the heating system which has been built up

at the Chair of Mechatronics of the University of Ro-
stock [Aschemann et al, 2010; Rauh et al, 2010]. The
following data for the problem and approximation are



Figure 1. Control functionsu(t).

given:

λ = 110 W/(m ·K),

κ1 = 3.276 · 106J/(m3K),

κ2 = 4170 W/(m3K),

L = 0.32 m, xn = nL/4, n = 1, 2, 3,

zy
i = (2i− 1)L/8, i = 1, . . . , 4, zd = zy

1

yd (t) = θ0 + 5 (1 + tanh[σ(t− T/2)] coth[σT/2]) ,

σ = 0.0015, T = 3600 s, b(x) = κ2,

v(t) = θ0 + 3t2T−2.

The control input is provided by a Peltier element so
that if x ∈ [3L/4, L] then a(x) = 6510 m−3 else
a(x) = 0. In Fig. 1, three control functions, optimal
polynomial feedforward control (vk = ϑ0, see [2]),
adaptive with and without (vk = ϑ0) identification,
are presented by the curves 1, 2, and 3, respectively.
The temperatures at the output position (z = zd) and

at the middle of the control segment (z = zy
4 ) are

shown for these controls in Fig. 2 by curves with the
same numbers. The relative error of the numerical so-
lution is equal to∆ = 1.5 · 10−4 . Note that adaptive
control strategy with identification gives the least devi-
ation from the desired profileyd.
In Fig. 3 the deviations of the temperature trajecto-

riesϑ1(zd, t) from the desired profileyd(t) for the two
adaptive controls are presented. The trajectory devia-
tions for the feedforward control are rather large and
not shown in this figure.
It is seen in Fig. 1–3 that the control obtained via feed-

forward strategy is the worst because no data about the
rise of the ambient temperature is used in the optimiza-
tion algorithm. By contrast, the adaptive control gives

Figure 2. Temperature trajectories at the input and output positions.

Figure 3. Temperature deviations from the desired profile for the

adaptive control with (2) and without (3) identification

a better output trajectory even without any identifica-
tion procedure, since the information about external
disturbances is implicitly passed on the adaptive con-
troller by means of temperature measurementsy(t) . If
the adaptive strategy involves the parameter identifica-
tion the mathematical model is corrected in the adap-
tive controller during the process and can provide more
accurate output trajectories.
The identified ambient temperatureṽ(t) and its error
ṽ(t) − v(t) for the adaptive strategy with identifica-
tion are given in Fig. 4 and 5, respectively. The devi-
ations of the identified temperature from its actual val-
ues (Fig. 5) is much smaller then the maximal changing
of the external temperature in the control process. The
numerical simulations show that this error decreases if
the time control horizontc becomes shorter. It also
seen that the identification accuracy goes down if the
rate of the temperature growth increases. This circum-
stance imposes certain constraints on the applicability
of the adaptive algorithm proposed.
The local error distributionϕ(z, t) introduced by the



Figure 4. Identified ambient temperaturev̂.

Figure 5. Deviations of the identified ambient temperature from its

actual values.

Eq. (5) and obtained from numerical experiments for
the adaptive control strategy with identification is de-
picted in Fig. 6 in the case when the order of the
polynomial approximations on each finite element is
M = 2 . The corresponding relative integral error de-
fined by Eq. (5) is small enough:∆ = 1.5 · 10−4 .
If the order of approximationsM is increased then the
integral error is decreased notably. For example, for
M = 3 andM = 4 the relative errors are equal to
∆ = 1.6 · 10−6 and∆ = 1.1 · 10−7 , respectively.
Note that the functionϕ(z, t) exposes imperfection of
the applied finite-dimensional model and give one the
possibility to develop new strategies of model refine-
ment.

6 Conclusion
In this paper, the adaptive control algoritm with para-

meter identification for trajectory tracing in the distrib-
uted heating system is proposed and discussed. This
control strategy is based on the method of integrodiffer-
ential relations, projective approach, and the finite ele-

Figure 6. Local error distribution

ment technique. The principle scheme of the adaptive
control structure is worked out and its specific features
are considered. A verification of control laws proposed
is performed in numerical simulations taking into ac-
count the explicit local and integral error estimates re-
sulted directly from the MIDR.
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