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Abstract
In this paper, we consider a planar dynamical system

with a piecewise linear function containing an arbitrary
(but finite) number of dropping sections and approxi-
mating some continuous nonlinear function. Studying
all possible local and global bifurcations of its limit cy-
cles, we give a sketch of the proof of the theorem stat-
ing that such a piecewise linear dynamical system with
k dropping sections and2k+1 singular points can have
at mostk+ 2 limit cycles,k+ 1 of which surround the
foci one by one and the last,(k + 2)-th, limit cycle
surrounds all of the singular points of this system.
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1 Introduction
The paper is based on the applications of Bifurcation

Theory originated by Andronov, Arnold, Thom, Whit-
ney, Zeeman and can be used for modeling problems,
where system parameters play a certain role in vari-
ous bifurcations. The theoretical studies of bifurcations
deal with so-called universal problems. This means
that sufficiently many parameters are available for uni-
versality of generic families of dynamical systems in
the context at hand, under a relevant equivalence rela-
tion. This has led to the classification of generic, lo-
cal bifurcations. In many applications, models have a
given number of parameters. Moreover, the bifurcation
analysis, taking place in the product of phase space and
parameter space, is not restricted to local features only.
On the contrary, often the interest is the global orga-
nization of the parameter space regarding bifurcations
which can be both local and global.
This paper deals with so-called sewed dynamical sys-

tems, i.e., with systems for which the domain of defin-
ition is divided into sub-domains where different an-
alytic systems are defined. The trajectories of these
partial systems are sewed in one way or another on

the boundaries of the sub-domains. Such systems have
some typical features, namely: 1) the system sewing
is immediate from the physical meaning of the prob-
lem under consideration; 2) the system is piecewise lin-
ear, i.e., the partial systems from which it is sewed are
linear systems; 3) on the line of sewing, a point map
(a first return function) is defined, what allows to deter-
mine the character of the system under consideration.
Piecewise linear dynamical systems always contain

some parameters and, under the variation of these pa-
rameters, the qualitative behavior of the systems can
obviously change. We will consider the simplest bi-
furcations possible in the sewed systems when the
sewing lines are unchanged under the parameter vari-
ations. It is natural to consider the following bifurca-
tions which are similar to the simplest bifurcations of
continuous dynamical systems: 1) the bifurcation of a
singular point of focus type; 2) the bifurcation of an
immovable point of focus type, a quasi-focus; 3) the
bifurcation of a sewed limit cycle; 4) the bifurcation
of a sewed separatrix going from a saddle to another
saddle (the saddles can be both sewed and unsewed);
5) the bifurcation of a separatrix of a saddle-shaped
singular point (sewed or unsewed) going from a saddle-
shaped singular point to another such point or to a sad-
dle (sewed or unsewed); 6) the bifurcation of a sewed
saddle-node; 7) the bifurcation of a sewed separatrix
of a saddle-node (sewed or unsewed) going out of the
saddle-node and going back to it. Besides, some spe-
cific bifurcations can occur in sewed systems. Since in
such systems, for example, arches of attraction or re-
pulsion composed of immovable points can be similar
to singular points, some bifurcations which are similar
to the generation of a limit cycle from a focus can occur
in the corresponding constructions.
Piecewise linear systems have many applications in

science and engineering. Special cases of such sys-
tems provide mathematical models for mechanical sys-
tems with Coulomb friction, for valve oscillators with a
discontinuous characteristic, for direct control systems
with a two-point relay mechanism, for planar dynami-



cal systems modeling neural activity, etc. Despite their
simple structure and relevance to the applications, there
is, to the best of our knowledge, no complete study
of their dynamical properties. In most existing papers,
which deal with planar dynamical systems with piece-
wise linear right-hand sides, either the systems consid-
ered are continuous or only particular cases are inves-
tigated. The first analytical results on such systems go
back to Andronov, Vitt, and Khaikin in the 1930s (see
[Andronov, Vitt and Khaikin, 1987]). The existence
and non-existence of an asymptotically stable periodic
solution (limit cycle) of a piecewise linear system can
be comparatively easily proved. However, for exam-
ple, periodic solutions with sliding motion are of great
importance to the applications. In particular, they de-
scribe the so-called stick-slip oscillations which appear
in mechanical systems with dry friction.
The main objective of the present paper is to provide a

complete analysis of the dynamical properties of piece-
wise linear systems, their dependence on the system
parameters studying, first of all, their limit cycle bi-
furcations. There are several ways to investigate the
qualitative dynamics of such systems [Filippov, 1988].
There are also numerous methods and good results on
studying limit cycles. However, the most important
impulse to their studying was given by the introduc-
tion of ideas coming from Bifurcation Theory [An-
dronov, Leontovich, Gordon and Maier, 1971; Bautin
and Leontovich, 1990; Gaiko, 2003; Guckenheimer
and Holms, 1990]. We know three principal limit cycle
bifurcations which we will study [Gaiko, 2003]: 1) the
Andronov-Hopf bifurcation (from a singular point of
center or focus type); 2) the separatrix cycle bifurcation
(from a homoclinic or heteroclinic orbit); 3) the multi-
ple limit cycle bifurcation. All of these local bifurca-
tions will be globally connected and will be applied to
the qualitative analysis of piecewise linear dynamical
systems.

2 Preliminaries
In this paper, geometric aspects of Bifurcation Theory

are used and developed. It gives a global approach to
the qualitative analysis and helps to combine all other
approaches, their methods and results. First of all, the
two-isocline method which was developed by Erugin
is used [Gaiko, 2003]. An isocline portrait is the most
natural construction for a polynomial equation. It is
sufficient to have only two isoclines (of zero and infin-
ity) to obtain principal information on the original poly-
nomial system, because these two isoclines are right-
hand sides of the system. Geometric properties of iso-
clines (conics, cubics, quadrics, etc.) are well-known,
and all isoclines portraits can be easily constructed. By
means of them, all topologically different qualitative
pictures of integral curves to within a number of limit
cycles and distinguishing center and focus can be ob-
tained. Thus, it is possible to carry out a rough topo-
logical classification of the phase portraits for the poly-

nomial dynamical systems and for the corresponding
piecewise linear systems. It is the first application of
Erugin’s method. After studying contact and rotation
properties of isoclines, the simplest (canonical) sys-
tems containing limit cycles can be also constructed.
Two groups of the parameters can be distinguished in
such systems: static and dynamic. Static parameters
determine the behavior of phase trajectories in princi-
ple, since they control the number, position and char-
acter of singular points in a finite part of the plane (fi-
nite singularities). The parameters from the first group
determine also a possible behavior of separatrices and
singular points at infinity (infinite singularities) under
the variation of the parameters from the second group.
The dynamic parameters are rotation parameters. They
do not change the number, position and index of the fi-
nite singularities and involve the vector field into direc-
tional rotation. The rotation parameters allow to con-
trol the infinite singularities, the behavior of limit cy-
cles and separatrices. The cyclicity of singular points
and separatrix cycles, the behavior of semi-stable and
other multiple limit cycles are controlled by these pa-
rameters as well. Therefore, by means of the rotation
parameters, it is possible to control all limit cycle bifur-
cations and to solve the most complicated problems of
the qualitative theory of dynamical systems (both con-
tinuous and piecewise linear).

In [Gaiko, 2003] some complete results on continu-
ous quadratic systems have been presented and some
preliminary results on generalizing geometric ideas and
bifurcation methods for cubic dynamical systems have
been obtained. So, in [Gaiko and van Horssen, 2004],
a canonical cubic dynamical system of Kukles-type
was constructed and the global qualitative analysis of
its special case corresponding to a generalized Liénard
equation was given. In particular, it was proved that the
foci of such a Líenard system could be at most of sec-
ond order and that the system could have at least three
limit cycles in the whole phase plane. Moreover, un-
like all previous works on the Kukles-type systems, by
means of arbitrary (including as large as possible) field
rotation parameters of the canonical system, the global
bifurcations of its limit and separatrix cycles were stud-
ied. As a result, the classification of all possible types
of separatrix cycles was obtained and all possible dis-
tributions of limit cycles were found for the general-
ized Liénard system. In [Botelho and Gaiko, 2006], the
global qualitative analysis of centrally symmetric cubic
systems which are used as learning models of planar
neural networks was established. All of these results
can be generalized to the corresponding piecewise lin-
ear Líenard-type dynamical systems.

Such systems have been considered in several paper.
For example, Bautin [Bautin, 1974] studied a dynam-
ical system which was used in radio-engineering for
describing tunnel diode circuits, where the nonlinear
function was approximated by a piecewise linear func-
tion composed of three linear pieces. Giannakopou-
los and Pliete [Guckenheimer and Holms, 1990] gene-



ralized that results for a piecewise linear system with
a line of discontinuity modeling stick-slip oscillations
which appeared in mechanical systems with dry fric-
tion. In this paper, the obtained results are generalized
to an arbitrary piecewise linear Liénard-type system,
where the polynomial is approximated by a piecewise
linear function composed of an arbitrary (but finite)
number of linear pieces. In particular, the following
bifurcations are studied for such a system: 1) the bi-
furcation of singular points (division of the parameter
space according to the number and character of singular
points, stability of singular points lying on the lines of
sewing, generation of limit cycles from singular points
of focus type under transferring the points through the
lines of sewing, generation of limit cycles (hyperbolic
and semi-stable) from the boundaries of the domains
filled by closed trajectories); 2) the separatrix bifurca-
tion (location of the bifurcation curves for the separa-
trix loops, stability of the separatrix loops); 3) the bifur-
cation of multiple limit cycles (location of the bifurca-
tion curves for the limit cycles of various multiplicity,
qualitative structure of the division in the phase plane).
As was shown in [Bautin and Leontovich, 1990], the
return map constructed in a neighborhood of a multiple
limit cycle of a piecewise linear dynamical system will
be an analytic function; therefore, all statements formu-
lated for multiple limit cycles of an analytic (or polyno-
mial) system will be also valid for sewed multiple limit
cycles which are considered in this paper. In particular,
we will apply the Wintner–Perko termination principle
(see [Gaiko, 2003; Perko, 2002]) for studying global
bifurcations of sewed multiple limit cycles of a piece-
wise linear Líenard-type dynamical system.

3 The Main Result
Consider the system

ẋ = y − ϕ(x), ẏ = β − αx− y, α > 0, β > 0, (1)

whereϕ(x) is a piecewise linear function containing
k dropping sections and approximating some continu-
ous nonlinear function. The lineβ − αx − y = 0 and
the curvey = ϕ(x) can be considered as the isoclines
of zero and infinity, respectively, for the correspond-
ing equation. Such systems and equations may occur,
for example, when tunnel diode circuits and some other
problems are studied (see [Andronov, Vitt and Khaikin,
1987; Bautin, 1974; Bautin and Leontovich, 1990; Fi-
lippov, 1988; Guckenheimer and Holms, 1990]).
Suppose that the ascending sections of system (1)

have an inclinationk1 > 0 and the descending (drop-
ping) sections have an inclinationk2 < 0. Then the
phase plane of (1) can be divided onto2k + 1 parts in
every of which (1) is a linear system: the ascending sec-
tions are ink+ 1 strip regions(I, III, V, . . . , 2K + 1)
and the descending sections are in otherk such re-
gions (II, IV, V I, . . . , 2K). The parametersk1, k2,
and alsoα can be considered as rotation parameters for

the sewed vector field of (1) (see [Bautin and Leon-
tovich, 1990; Gaiko, 2003]).
System (1) can have an odd number of simple sin-

gular points: 1, 3, 5, . . . , 2k + 1. If (1) has the only
singular point, this point will be always an antisaddle
(center, focus or node). A focus (node) will be always
stable in odd regions and unstable in even regions if
k2 > 1. If system (1) has2k + 1 singularities, then
k of them are saddles (they are in even regions) and
k+1 others are antisaddles (foci or nodes) which are al-
ways stable (they are in odd regions). The pieces of the
straight linesβ = x2i−1α+ y2i−1 andβ = x2iα+ y2i

(i = 1, 2, . . . , k), where(x2i−1, y2i−1) and(x2i, y2i)
are the coordinates of the upper and lower corner points
of the curveϕ(x), respectively, form a discriminant
curve separating the domains in the plane(α, β),where
α ≤ k2, with different numbers of singular points.
The points of the discriminant curve correspond to the
sewed singularities of saddle-focus or saddle-node type
(α < k2) and its corner points correspond to the un-
stable equilibrium segments(α = k2) which coincide
with the dropping sections of the curvey = ϕ(x).
In the case whenk2 < 1, closed trajectories cannot

exist and only bifurcations of singular points are possi-
ble in system (1). Therefore, we will consider further
only the case whenk2 > 1 and(k1− 1)2 < 4k2 giving
various bifurcations and, first of all, the bifurcations of
limit cycles. In the next section, studying all such bi-
furcations (local and global), we will give a sketch of
the proof of the following theorem.

Theorem 3.1. System (1) withk dropping sections and
2k + 1 singular points can have at mostk + 2 limit
cycles,k + 1 of which surround the foci one by one
and the last,(k+ 2)-th, limit cycle surrounds all of the
singular points of (1).

4 Limit Cycle Bifurcations
Proof. To prove the theorem, we will study both local
and global bifurcations of limit cycles. The limit cycle
of system (1) will be calledsmallif it belongs to at most
two adjoining regions; the cycle will be calledbig if it
belongs to at least three adjoining regions.

4.1 Local Bifurcations

Following [Bautin, 1974], we will study first stability
of the singular points on the line of sewing. Suppose
that the straight lineβ − αx − y = 0 passes through
the corner point(x1, y1) of the curvey = ϕ(x) on the
boundary of regionsI, II and thatα > (k2 + 1)2/4.
Then the regionI (II) will be filled by the pieces of
trajectories of the stable (unstable) focus.
Introduce positive coordinatesS0 (lower(x1, y1)) and
S1 (upper(x1, y1)) on the line of sewing of regions
I andII; S2 (lower (x2, y2)) andS3 (upper(x2, y2))
on the line of sewing of regionsII andIII, etc. The
mapsS0 → S1 along the trajectories of regionI and
S1 → S0 along the trajectories of regionII are written



as follows:

S1 = S0e
πσ1/ω1 , S̄0 = S1e

πσ2/ω2 , (2)

whereσi, ωi (i = 1, 2) are the real and imaginary parts
of the roots of the characteristic equation for a singular
point of regionsI, II, respectively.
The singular point(x1, y1) will be a sewed center

(S̄0 = S0) iff σ1/ω1 + σ2/ω2 = 0, i. e., whenα =
α∗ ≡ (1 − k1/k2)/(k2 − k1 + 2). The sewed focus
(x1, y1) will be stable(S̄0 < S0) whenα > α∗ and
unstable(S̄0 > S0) whenα < α∗.
Consider the return mapS0 → S̄0 along the trajecto-

ries of regionsI andII. For regionI, we will have

S0 =
δ0

sinω1τ1
(ω1 cosω1τ1 − σ1 sinω1τ1 − ω1e

−σ1τ1)

≡ δ0ζ(τ1),

S1 =
δ0

sinω1τ1
(ω1 cosω1τ1 + σ1 sinω1τ1 − ω1e

σ1τ1)

≡ δ0χ(τ1),
(3)

whereδ0 is the distance from the boundary of regions
I, II to the singular point;ζ andχ are monotonic func-
tions. The return map along the trajectories of region
II has a similar form.
Calculation of the first derivative for the return map

gives

dS̄0

dS0
=
S0

S̄0
e2(σ1τ1+σ2τ2), (4)

whereτi (i = 1, 2) is motion time along the trajecto-
ries of regionsI, II, respectively;σi = (1 + ki)/2
(i = 1, 2).
Studying the return mapS0 → S̄0 by means of (4), we

prove that at most one limit cycle can exist in regionsI
andII (see also [Bautin, 1974]). The same result can
be obtained for regionsIII andIV, . . . , 2K − 1 and
2K.
Consider now the map̄S0 = f(S0) sewed of two

pieces:S̄0 = ξ(S0) along the trajectories in regionsI,
II, . . . , 2K andS̄0 = ψ(S0) along the trajectories in
all regions,I, II, . . . , 2K, 2K + 1. The mapS0 → S1

in region I is given by (3). The mapsS1 → S3,
S3 → S5, . . . , S2k−1 → S2k−2 (S2k−1 → S2k+1,
S2k+1 → S2k, S2k → S2k−2), S2k−2 → S2k−4, . . . ,
S2 → S0 have similar forms.
The derivatives for the functionsξ(S0), ψ(S0) are

given by the following expressions, respectively:

dS̄0

dS0
=
S0

S̄0
e2σ1(τ1+τ+

3 +τ−3 +...+τ2k−1)

× e2σ2(τ
+
2 +τ−2 +...+τ+

2k−2+τ−2k−2),

(5)

dS̄0

dS0
=
S0

S̄0
e2σ1(τ1+τ+

3 +τ−3 +...+τ2k+1)

× e2σ2(τ
+
2 +τ−2 +...+τ+

2k+τ−2k),

(6)

where τ1, τ2k−1, τ2k+1 are motion times in regions
I, 2K − 1, 2K + 1 and τ+

2i (τ−2i), τ
+
2i+1 (τ−2i+1),

i = 1, 2, . . . , k, are motion times in the upper (lower)
parts of regionsII, III, . . . , 2K, respectively.
Studying the return map̄S0 = f(S0) by means of

(5) and (6), we prove that at most two limit cycles can
be generated by the boundary of the domain filled by
closed trajectories of (1) and that these two limit cycles
can be only outside the boundary.
Suppose that a part of the straight lineβ−αx−y = 0

coincides with a dropping section of (1), for example,
with the first one(α = k2). The dropping section of (1)
will be an unstable equilibrium segment and regionsI,
II (because of the condition(k1 − 1)2 < 4k2) will
be filled by trajectories of the stable foci. It is easy to
obtain an explicit expression for the map of the half-
line S0 into itself:

S̄0 = S0 e
2πσ1/ω1 + δ(k2 − 1)(1 + eπσ1/ω1), (7)

whereδ is the width of regionsII.
This map has the only stable fixed point, and we can

show that two stable foci surrounded by unstable limit
cycles (one by one) are generated from the ends of
the equilibrium segment under the rotation of the line
β − αx− y = 0 (see also [Bautin, 1974]).
The simplest type of separatrix cycles of (1) is a so-

called eight-loop formed by two ordinary saddle loops.
In the case of2k+1 simple singular points, a separatrix
cycle can containk + 1 saddle loops, the first and the
last of which are ordinary loops with one rough sad-
dle on each and thek − 1 others are separatrix digons
with two rough saddles on each. Such a separatrix cy-
cle will be callednondegenerate.In the cases when
the straight lineβ − αx − y = 0 passes through the
corner points of the curvey = ϕ(x), we will havede-
generateseparatrix cycles of lips-type containing one
or two sewed saddle-nodes. It is clear that the bifur-
cations of separatrix cycles do not depend on the pa-
rameterβ (see [Bautin, 1974]). The separatrix cycles
can be formed or destroyed only under a variation of
the parameterα. The character of their stability will be
determined by the sign of the saddle quantities which
are always positive in our case, when the saddles are
inside or on the boundary of even regionsII, IV, . . . ,
2K andk2 > 1 (Theorems 44 and 47 from [Andronov,
Leontovich, Gordon and Maier, 1971] are valid for the
piecewise linear dynamical systems as well). It follows
that the separatrix cycles of (1) are always unstable (in-
side and outside) and, under a variation ofα, a non-
degenerate separatrix cycle can generate at mostk + 1
small unstable limit cycles inside its loops (digons) or
the only big unstable limit cycle outside it.



4.2 Global Bifurcations

Now we are able to consider the global bifurcations
of limit cycles. Suppose again that the zero isocline
β−αx−y = 0 passes through the corner point(x1, y1)
of the infinite isocliney = ϕ(x) and thatα > α∗. In
this case, the only singular point in the phase plane is a
sewed stable focus and all trajectories of (1) tend to it
whent → +∞. For decreasingα (k2 < α < α∗), the
sewed focus becomes unstable and a stable limit cycle
is generated from the boundary curve of the domain
filled by closed trajectories (immediately after passing
the valueα∗ by the parameterα).
Forα = k2, the first dropping section of (1) will coin-

cide with a part of the straight lineβ−αx− y = 0 and
an unstable equilibrium segment will appear inside the
stable limit cycle. If we rotate the lineβ −αx− y = 0
around an interior point of the segment (changing both
of the parameters,α and β), two unstable limit cy-
cles surrounding stable foci (one by one) will be gen-
erated from the ends(x1, y1) and(x2, y2) of the equi-
librium segment. Under the further rotation of the line
β − αx− y = 0, it will pass first through the next cor-
ner point,(x4, y4), and then, successively, through the
points(x6, y6), . . . , (x2k, y2k). Every time, the corner
point becomes a sewed saddle-node generating an un-
stable limit cycle surrounding a stable focus. So, we
will get a piecewise linear system with2k + 1 singular
points having at leastk + 1 small unstable limit cycles
surrounding the stable foci (one by one) inside a big
stable limit cycle,k+2, surrounding all of the singular
points.
Under the further rotation of the zero isocline, allk+1

small limit cycles simultaneously disappear in a sep-
aratrix cycle consisting ofk + 1 loops (digons), this
separatrix cycle generates a big (unstable) limit cycle
which combines with another big (stable) limit cycle of
(1) forming a semi-stable (double) limit cycle which fi-
nally disappears in a so-called trajectory condensation.
Let us prove that system (1) cannot have more than
k+2 limit cycles. The proof is carried out by contradic-
tion by means of the Wintner–Perko termination princi-
ple [Bautin and Leontovich, 1990; Gaiko, 2003; Perko,
2002]. Since a small limit cycle is always unique in
the corresponding strip regions, suppose that system (1)
with three field rotation parameters,k1, k2, andα, has
three big limit cycles. Then we get into some domain
in the space of these parameters which is bounded by
two fold bifurcation surfaces forming a cusp bifurca-
tion surface of multiplicity-three limit cycles [Gaiko,
2003; Perko, 2002].
The corresponding maximal one-parameter family of

multiplicity-three limit cycles cannot be cyclic, other-
wise there will be at least one point corresponding to
the limit cycle of multiplicity four (or even higher) in
the parameter space. Extending the bifurcation curve
of multiplicity-four limit cycles through this point
and parameterizing the corresponding maximal one-
parameter family of multiplicity-four limit cycles by a
field rotation parameter, for example, by the parame-

terα, we will obtain a monotonic curve which, by the
Wintner–Perko termination principle, terminates either
at the boundary curve of the domain filled by closed
trajectories of (1) or on some degenerate separatrix cy-
cle of (1) [Gaiko, 2003; Perko, 2002].
Since we know at least the cyclicity of the boundary

curve which is equal to two, we have got a contradic-
tion with the termination principle stating that the mul-
tiplicity of limit cycles cannot be higher than the multi-
plicity (cyclicity) of the end bifurcation points in which
they terminate [Gaiko, 2003; Perko, 2002].
If the maximal one-parameter family of multiplicity-

three limit cycles is not cyclic, using the same princi-
ple, this again contradicts with the cyclicity result for
the boundary curve not admitting the multiplicity of
limit cycles to be higher than two. Moreover, it also
follows from the termination principle that the degener-
ate separatrix cycles of (1) cannot have the multiplicity
(cyclicity) higher than two. Therefore, according to the
same principle, there are no more than two big limit cy-
cles in the exterior domain outside the boundary curve
of (1).
The same results can be obtained by means of the new

geometric methods developed in [Gaiko, 2007, NA;
Gaiko, 2007, IJMM]. The phase portraits and bifur-
cation diagrams for system (1) will be similar to that
which were constructed in [Bautin, 1974, Bautin and
Leontovich, 1990]. Thus, system (1) with2k + 1 sin-
gular points cannot have more thank + 2 limit cycles,
i. e., k + 2 is the maximum number of limit cycles of
such system and the obtained distribution(k + 1 small
limit cycles plus a big limit cycle) is the only possibility
for their distribution. The theorem is proved.

5 Conclusion
Thus, generalizing the results of [Bautin, 1974; Gian-

nakopoulos and Pliete, 2001], where a planar dynam-
ical system with a piecewise linear function contain-
ing the only dropping section and approximating some
continuous nonlinear function was considered, we have
studied a system with an arbitrary number of dropping
sections and, by means of the bifurcation methods de-
veloped in [Botelho and Gaiko, 2006; Gaiko, 2003 –
Gaiko and van Horssen, 2004], have given a sketch of
the proof of the theorem stating that such a piecewise
linear dynamical system withk dropping sections and
2k + 1 singular points can have at mostk + 2 limit
cycles,k + 1 of which surround the foci one by one
and the last,(k + 2)-th, limit cycle surrounds all of its
singular points.
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generalized Líenard system.Nonlin. Analysis, 59,
pp. 189–198.
Giannakopoulos, F. and Pliete, K. (2001). Planar sys-
tems of piecewise linear differential equations with a
line of discontinuity.Nonlinearity, 14, pp. 1–22.
Guckenheimer, J. and Holms, P. (1990).Nonlinear
Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields. Springer. New York.
Perko, L. (2002).Differential Equations and Dynami-
cal Systems. Springer. New York.


