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1. INTRODUCTION

This paper surveys a recently developed method
for designing adaptively stabilising control laws
for general nonlinear systems and demonstrates
how such a method can be exploited to design
control laws for physically motivated systems. The
method relies upon the notions of system immer-
sion and manifold invariance and, in principle,
does not require the knowledge of a (control)
Lyapunov function. The resulting adaptive control
schemes counter the effect of the uncertain pa-
rameters adopting a robustness perspective. This
is in contrast with some of the existing adaptive
designs that (relying on certain matching con-
ditions) treat these terms as disturbances to be
rejected.

Finally, the proposed construction does not invoke
certainty equivalence, nor requires a linear param-
eterisation and provides a systematic procedure to
add cross terms between the parameter estimates
and the plant states in the Lyapunov functions
used to assess the properties of the adaptive sys-
tem.

The paper is organized as follows. Section 2 intro-
duces the basic tools for solving adaptive control
problems and illustrates them on a simple exam-
ple. Sections 3, 4, 5, 6 present four case studies.
In the first one we solve the problem of aircraft

wing rock elimination. The second one deals with
a robot tracking problem using visual informa-
tion. In the third one we design an adaptive
output feedback voltage regulator for a DC–DC
converter. The fourth one tackles the design of a
complete flight control system for an autonomous
aircraft. Finally, Section 7 wraps up the paper
with some concluding remarks.

2. ADAPTIVE STABILIZATION VIA
IMMERSION AND INVARIANCE

In this section the so-called Immersion and Invari-
ance (I&I) methodology 1 is introduced. In par-
ticular, we present a generalization of the main
theorem in (Astolfi and Ortega, 2003).

The basic idea in the I&I methodology is to
achieve stabilisation by immersing the plant dy-
namics into a stable (lower-order) target system.
Roughly speaking, a system Σ1 is said to be
immersed into a system Σ2 if the input-output
mapping of Σ2 is a restriction of the input-output
mapping of Σ1, i.e., any output response gen-
erated by Σ2 is also an output response of Σ1

for a restricted set of initial conditions, see, e.g.,
(Byrnes et al., 1997; Jouan, 2003).

1 See (Astolfi and Ortega, 2003) and the forthcoming
monograph (Astolfi et al., 2007).



The main stabilization ideas in (Astolfi and Or-
tega, 2003) can be used to design adaptive stabil-
ising controllers for classes of nonlinear systems
with parametric uncertainties. To this end, con-
sider the system

ẋ = f(x, u, θ), (1)

with state x ∈ R
n, control u ∈ R

m, unknown
parameter θ ∈ R

q, and an equilibrium x∗ to be
stabilised, and define the augmented system

ẋ = f(x, u, θ),
˙̂
θ = w, (2)

where θ̂ ∈ R
q, and w ∈ R

q is a new control signal.
The adaptive stabilisation problem can be posed,
informally, as follows.

Find (if possible) a state feedback control law
described by equations of the form

w = ω(x, θ̂), u = υ(x, θ̂) (3)

such that all trajectories of the closed-loop sys-
tem (2)-(3) are bounded and

lim
t→∞

x(t) = x∗. (4)

Note that, since f(·) is only partially known, it

is not required that θ̂ converges to any particular
equilibrium, but merely that it remains bounded.
The following theorem provides conditions under
which the above problem is solvable using the I&I
methodology.

Theorem 1. Consider the system (2) and a point
x∗ ∈ R

n. Let p ≤ n, ξ ∈ R
p, ζ ∈ R

n−p and
z ∈ R

q. Assume that there exist smooth mappings
α(ξ, θ) → R

p, π(ξ, θ) → R
n, φ(x, θ) → R

n−p,
c(ξ, θ) → R

m, u(x, ζ, z + θ) → R
m, ω(x, ζ, z +

θ) → R
q and β(x) → R

q such that the following
hold.

(H1) The system

ξ̇ = α(ξ, θ) (5)

has a globally asymptotically stable equilibrium
at ξ∗ ∈ R

p and x∗ = π(ξ∗, θ).
(H2) For all ξ ∈ R

p,

f(π(ξ, θ), c(ξ, θ), θ) =
∂π

∂ξ
α(ξ, θ). (6)

(H3) The set identity

M = {x ∈ R
n |φ(x, θ) = 0}

= {x ∈ R
n |x = π(ξ, θ), ξ ∈ R

p} (7)

holds.
(H4) All trajectories of the system

ζ̇ =
∂φ(x, θ̂)

∂x
f(x, u(x, ζ, z + θ), θ)+

∂φ(x, θ̂)

∂θ̂
ω(x, ζ, z + θ),

(8)

ż = ω(x, ζ, z + θ) +
∂β

∂x
f(x, u(x, ζ, z + θ), θ), (9)

ẋ= f(x, u(x, ζ, z + θ), θ) (10)

are bounded and satisfy

lim
t→∞

ζ(t) = 0, (11)

lim
t→∞

[φ(x(t), z(t) + θ) − φ(x(t), θ)] = 0. (12)

Then all trajectories of the closed-loop system

ẋ = f(x, u(x, φ(x, θ̂ + β(x)), θ̂ + β(x)), θ)
˙̂
θ = w(x, φ(x, θ̂ + β(x)), θ̂ + β(x))

(13)

are bounded and satisfy (4).

Finally,

lim
t→∞

x(t) − π(ξ(t), θ) = 0,

and, if φ(x(0), θ̂(0)) = 0, θ̂(0)−θ+β(x(0)) = 0 and
ξ(0) = π(x(0), θ) x(t) = π(ξ(t), θ), for all t ≥ 0.

Proof. Define the variables

ζ = φ(x, θ̂) , z = θ̂ − θ + β(x)

and note that the dynamics of ζ and z are given
by (8) and (9). From (H4) and the fact that z2
is globally diffeomorphic to θ̂ it follows that all
trajectories of the closed-loop system are bounded
and are such that (11) and (12) hold. This implies,
by (H3), that x(t) converges to π(ξ, θ), hence by
(H1) all trajectories of the closed-loop system are
such that (4) holds.

Finally, the last claim is a consequence of (H2),
boundedness of solutions of system (10)-(11)-(12)
and conditions (11) and (12). �

Remark 1. The condition (12) is strictly weaker
than the requirement that z converges to zero.
However, if the latter holds, then θ̂(t) + β(x(t))
is an asymptotically converging estimate of the
unknown parameter vector θ.

In the original formulation of adaptive I&I, as
given in (Astolfi and Ortega, 2003), the target dy-
namics are selected as the closed-loop system that
would result from applying a stabilizing known-
parameters controller. This implies that one can
select π(ξ, θ) = ξ and that the variable ζ is not
needed. Therefore, Theorem 1 provides a non-
trivial extension of the results in (Astolfi and
Ortega, 2003), and it leads to the following defi-
nition.

Definition 1. The system (2) is said to be adap-
tively I&I stabilisable with target dynamics (5) if
(H1)–(H4) of Theorem 1 are satisfied.

Example 1. Consider the first-order nonlinear sys-
tem

ẋ = θx2 + u , (14)



where θ ∈ R is an unknown constant parameter.
A stabilizing certainty-equivalence controller for
the system (14) is given by u = −kx− θ̂x2, with

k > 0 and
˙̂
θ = γx3. The above adaptive law is

chosen to cancel the parameter-dependent terms
from the time-derivative of the Lyapunov function

V (x, θ̂) = 1
2x

2 + 1
2γ

(

θ̂ − θ
)2
, which is given by

V̇ (x, θ̂) = −kx2 +

(

˙̂
θ

γ
− x3

)

(

θ̂ − θ
)

= −kx2.

This establishes boundedness of x and θ̂, and
convergence of x to zero. However, the result
relies on a (possibly non-robust) cancellation of
terms in the derivative of the Lyapunov function.
Moreover, no conclusion can be drawn on the
behaviour of the estimation error θ̂ − θ, except
that it converges to a constant value.

I&I provides an alternative approach which avoids
the cancellation and provides a mean of shaping
the dynamic response of the estimation error. To
illustrate this property, consider the augmented
system

ẋ = θx2 + u,
˙̂
θ = w, (15)

and the target system ξ̇ = −kξ, with k > 0.

Following the proof of Theorem 1, consider, in the
space (x, θ̂), the manifold

z = θ̂ − θ + β(x) = 0 , (16)

where β(·) is a continuous function yet to be spec-
ified. The dynamics of the system (15) restricted
to the manifold (16) (provided it is invariant) are
described by the equation

ẋ =
(

θ̂ + β(x)
)

x2 + u =
(

θ + z
)

x2 + u,

hence they are completely known and the equi-
librium x = 0 is asymptotically stabilised by the
control law

u = −kx−
(

θ̂ + β(x)
)

x2, (17)

which yields a closed-loop system which is a copy
of the target system.

For the above design to be feasible, the first step
in the proposed approach consists in finding an
update law w that renders the manifold (16)
invariant . To this end, consider the dynamics of
z, which are given by the equation

ż = w +
∂β

∂x

[

(

θ̂ + β(x) − z
)

x2 + u
]

,

and note that the update law

w = −∂β
∂x

[

(

θ̂ + β(x)
)

x2 + u
]

=
∂β

∂x
kx (18)

is such that the manifold (16) is invariant and the
off-the-manifold dynamics are described by the
equation

ż = −∂β
∂x

x2z.

Selecting the function β(·) as

β(x) = γ
x3

3
, (19)

with γ > 0, yields the system

ż = −γx4z. (20)

Consider now the Lyapunov function V = 1
2z

2,

and note that V̇ = −γx4z2 ≤ 0, hence z = 0
is a (uniformly) stable equilibrium and there-
fore z(t) ∈ L∞. By integrating V̇ it follows
that V (∞) − V (0) = −γ

∫∞

0
|x2(t)z(t)|2dt, hence

x2(t)z(t) ∈ L2. From (14)-(17) this implies that
x(t) converges to zero. Moreover, the extra term
β(x)x2 in the control law (17) renders the closed-

loop system (15)-(17)-(18) ISS with respect to θ̂−
θ. Note finally, that the closed-loop system can be
regarded as the cascaded interconnection between
two stable systems whose gains can be tuned via
the arbitrary constants k and γ. This modularity
property is one of the prominent features of the
I&I approach.

3. AIRCRAFT WING ROCK

We consider the problem of wing rock elimination
in high-performance aircrafts. Wing rock is a limit
cycle oscillation which appears in the rolling mo-
tion of slender delta wings at high angles of attack,
see, e.g., (Guglieri and Quagliotti, 2001; Hsu and
Lan, 1985; Monahemi and Krstić, 1996) and the
references in (Krstić et al., 1995, Section 4.6)
for more detail. This example has been adopted
from (Monahemi and Krstić, 1996) and (Krstić et
al., 1995, Section 4.6), where a controller, based
on the adaptive backstepping method, has been
proposed.

Consider the system

ẋ1 = x2

ẋ2 = x3 + ψ(x1, x2)
>θ

ẋ3 =
1

τ
u− 1

τ
x3,

(21)

where the states x1, x2 and x3 represent the
roll angle, roll rate and aileron deflection angle
respectively, τ is the aileron time constant, u is
the control input, θ ∈ R

5 is an unknown constant
vector and

ψ(x1, x2)
> =

[

1, x1, x2, |x1|x2, |x2|x2

]

.

The control objective is to regulate x1 to zero. To
begin with we augment the system (21) with the
update law

˙̂
θ = w, (22)

with θ̂ ∈ R
5 and w ∈ R

5, and define the target
system

ξ̇1 = ξ2, ξ̇2 = −k1ξ1 − k2ξ2,



with k1 > 0 and k2 > 0. Setting π1(ξ, θ) = ξ1
and π2(ξ, θ) = ξ2 ensures that condition (H1) of
Theorem 1 holds. Let β(x) = β(x1, x2). Then from
the first equation in (6) we obtain

π3(ξ, θ) = −k1ξ1 − k2ξ2 − ψ(ξ)>θ,

hence the manifold M in (7) is described by the
function

φ(x, θ) = x3 − π3([x1, x2]
>, θ)

= x3 + k1x1 + k2x2 + ψ([x1, x2]
>)>θ.

Consider now the variables

ζ = φ(x, θ̂), z = θ̂ − θ + β(x1, x2),

and note that the system (21)-(22) can be ex-
pressed in the ζ, z, x1, x2 co-ordinates as

ζ̇ =
1

τ
u− 1

τ
x3 + δ1(x, θ̂)x2+

δ2(x, θ̂)
(

x3 + ψ(x1, x2)
>θ
)

+ ψ(x1, x2)
>w,

ż = w +
∂β

∂x1
x2 +

∂β

∂x2

(

x3 + ψ(x1, x2)
>θ
)

,

ẋ1 = x2,

ẋ2 = −k1x1 − k2x2 − ψ(x1, x2)
>z + ζ,

where

δi(x, θ̂) = ki +
∂ψ>(x1, x2)

∂xi
θ̂+

∂(ψ(x1, x2)
>β(x))

∂xi
.

By an appropriate definition of the control laws w
and u the above system can be rewritten as

ζ̇ = −σ(x, θ̂)ζ − δ2(x, θ̂)ψ(x1, x2)
>z,

ż = − ∂β

∂x2
ψ(x1, x2)

>z,

ẋ1 = x2,

ẋ2 = −k1x1 − k2x2 − ψ(x1, x2)
>z + ζ,

(23)

for some function σ(x, θ̂), which clearly highlights
the role of the perturbation term ψ(x1, x2)

>z. In
particular, when this term is zero, the (x1, x2, ζ)
system has a globally asymptotically stable equi-
librium at zero, provided σ(x, θ̂) is properly se-
lected.

The design of the adaptive control law is thus
completed by selecting the functions σ(·) and β(·)
in (23) to satisfy condition (H4) of Theorem 1.
The function β(·) can be selected as

β(x1, x2) = γ

[

x2, x1x2,
1

2
x2

2,
1

2
|x1|x2

2,
1

3
|x2|x2

2

]

,

with γ > 0, yielding the error dynamics

ż = −γψ(x1, x2)ψ(x1, x2)
>z, (24)

for which z = 0 is a globally stable equilibrium,
and ψ(x1, x2)

>z ∈ L2. Finally, the function σ(·)
can be selected as

σ(x, θ̂) = λ+ εδ2(x, θ̂)
2,

with λ > 0 and ε > 0, which guarantees bounded-
ness of all trajectories of the system (23).
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Fig. 1. State-space trajectory of the aircraft wing
rock system for initial conditions x1(0) = 0.4,
x2(0) = x3(0) = 0.
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Fig. 2. Time history of the control input u. Dotted
line: full-information controller. Dashed line:
adaptive backstepping controller. Solid line:
proposed controller.

The controlled aircraft wing rock system (21) has
been simulated using the data provided in (Krstić
et al., 1995, Section 4.6). The design parameters
are k1 = 25, k2 = 10, γ = 100, λ = 5, ε = 0.0001.
Note that the target dynamics have been selected
to match the behaviour of the adaptive backstep-
ping controller of (Krstić et al., 1995, Section 4.6),
hence the responses are directly comparable. In
addition the full-information controller, which is
obtained by assuming the parameters are known
and applying feedback linearisation, has also been
implemented. Figure 1 shows the trajectory of the
controlled system and of the uncontrolled system
(u = 0) for the initial conditions x1(0) = 0.4,

x2(0) = x3(0) = 0, θ̂(0) = 0, and Figure 2
shows the corresponding control efforts. Observe
that the proposed adaptive scheme recovers the
performance of the full-information controller and
is considerably faster than the adaptive backstep-
ping controller. The speed of response can be
further increased (or reduced) by tuning the pa-
rameter γ. Note that, due to the form of the error
dynamics (24), which is imposed by the selection
of the function β(·), the speed of adaptation is
directly related to the gain γ. This is in contrast
with adaptive backstepping.
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4. A VISUAL SERVOING PROBLEM

We illustrate, by means of a visual servoing prob-
lem, how adaptive I&I stabilisation can be applied
in the nonlinearly parameterised case. Consider
the visual servoing of a planar two-link robot
manipulator in the so-called fixed-camera configu-
ration, where the camera orientation and scale fac-
tor are unknown (Hutchinson et al., 1996; Kelly,
1996; Astolfi et al., 2002). The control goal is to
place the robot end-effector in some desired con-
stant position, or to make it track a (slowly mov-
ing) trajectory, by using a vision system equipped
with a fixed camera that is perpendicular to the
plane where the robot evolves, as depicted in Fig-
ure 3. We model the action of the camera as a
static mapping from the joint positions q ∈ R

2

to the position (in pixels) of the robot tip in the
image output, denoted x ∈ R

2. This mapping is
described by

x = aeJθ (k(q) − ϑ1) + ϑ2, (25)

where θ is the orientation of the camera with
respect to the robot frame, a ≥ am > 0 and ϑ1, ϑ2

denote intrinsic camera parameters (scale factors,
focal length and centre offset, respectively), k(·) :
R

2 → R
2 defines the robot direct kinematics, and

J =

[

0 −1
1 0

]

, eJθ =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

.

Invoking standard time-scale separation argu-
ments and assuming an inner fast loop for the
robot velocity control, we concentrate on the kine-
matic problem of generating the references for
the robot velocities. The robot dynamics are then
described by a simple integrator q̇ = v, where
v ∈ R

2 are the joint velocities. The direct kine-
matics yield k̇ = J (q)q̇, where J (q) = ∂k/∂q
is the analytic robot Jacobian, which is assumed
nonsingular. Differentiating (25) and replacing the
latter expression yields the dynamic model of the
overall system of interest, namely

ẋ = aeJθu, (26)

where u = J (q)v is a new input. The problem is to
find a control law u such that x(t) asymptotically
tracks a reference trajectory x∗(t) in spite of the
lack of knowledge of a and θ.

Note that, if θ were known, a stabilising control
law for system (26) could be obtained without the

knowledge of the uncertain parameter a. Indeed,
the feedback

υ(x, θ) = − 1

am
e−Jθ (x̃− ẋ∗) ,

where x̃ = x − x∗, yields the target closed-loop
dynamics

˙̃x = − a

am
(x̃− ẋ∗) − ẋ∗,

whose trajectories converge to zero if either
a/am = 1 or |ẋ∗(t)| → 0. Motivated by this
property, the adaptive I&I methodology yields the
following result.

Proposition 1. Consider the system (26) and a
bounded reference trajectory x∗, with bounded
first and second order derivatives ẋ∗, ẍ∗, and
assume that a positive lower bound on the scale
factor a is known, i.e., a ≥ am > 0. Then the
adaptive I&I controller

u = −e
−J(θ̂+ 1

2
|s|2)

am
s,

˙̂
θ = s> (s+ ẋ∗ + ẍ∗) , (27)

where s = x̃ − ẋ∗, is such that all trajectories of
the closed-loop system (26)–(27) are bounded and
the tracking error either satisfies

lim
t→∞

|x̃(t) − w(t)| = 0, (28)

where w(t) is the solution of

ẇ = − a

am
e−J arccos(am/a)w

+
( a

am
e−J arccos(am/a) − I

)

ẋ∗,
(29)

with initial conditions w(0) = x̃(0), or

lim
t→∞

|s(t)| = 0, lim
t→∞

x̃(t) = 0. (30)

In particular, if either am = a or lim
t→∞

|ẋ∗(t)| = 0,

then lim
t→∞

x̃(t) = 0.

Sketch of the proof. Let z = θ̂ − θ + β(s), where
β(s) = 1

2 |s|2, and note that the closed-loop dy-
namics are given by

˙̃x = − a

am
e−Jzx̃−

(

− a

am
e−Jz + I

)

ẋ∗. (31)

Comparing with (29), it is clear that the control
objective is achieved if z(t) → arccos(am/a),
which is established from the dynamics of z which
are given by (note that s>e−Jzs = |s|2 cos(z))

ż = −|s|2
(

a

am
cos(z) − 1

)

.
�

The adaptive I&I controller (27) has been tested
through simulations 2 . The simulations have been
carried out in the same conditions as (Hsu and
Aquino, 1999). A case of large disorientation is

2 See (Zachi et al., 2004) for an experimental study.
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Fig. 4. Behaviour of the normalised image output
signals x1(t) and x2(t) for x∗1 = x∗2 = 0.1.

taken into consideration: θ = 1 rad, with θ̂(0) = 0
and we have used a = 0.7 and am = 0.5. The
initial conditions of the manipulator are q1(0) =
1.3 rad and q2(0) = −1.3 rad. Figure 4 shows the
evolution of the states for the set-point control
case, with x∗1 = x∗2 = 0.1.

5. ADAPTIVE OUTPUT FEEDBACK
CONTROL OF THE DC–DC BOOST

CONVERTER

Consider the problem of designing an adaptive
(output feedback) voltage regulator for the DC–
DC boost converter with the topology shown in
Figure 5. The problem of regulating these devices
by PWM control schemes has been treated in
(Kassakian et al., 1991) and, in the framework of
nonlinear control theory, in (Ortega et al., 1998a)
and related references, see also (Escobar et al.,
1999) for an experimental comparative study and
(Rodŕıguez et al., 2000) for a design example.
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Fig. 5. Diagram of the DC–DC boost converter
circuit.

The averaged model of the boost converter is given
by the equations

Lẋ = −uy +E, Cẏ = − 1

R
y + ux, (32)

where x is the input (inductor) current, y is the
output (capacitor) voltage, u is the duty ratio
of the transistor switch and L, C, R and E are
positive constants representing the inductance,
capacitance, load resistance and input voltage,
respectively. It is assumed that only the state y is
available for feedback, the constant E is unknown,
and u ∈ [ε, 1] with 0 < ε < 1. The control problem
is to regulate the output y to a positive value y∗.

The system (32) can be rewritten as 3

3 This example highlights the fact that the I&I approach
allows to deal with unknown parameters and unmeasured
states in a unified way.

[

θ̇1
θ̇2

]

=

[

0 0
1

L
0

]

[

θ1
θ2

]

+

[

0

− 1

L
uy

]

ẏ = − 1

RC
y +

1

C
uθ2,

(33)

where θ1 = E and θ2 = x are unmeasured. A
solution to the output voltage regulation problem
is given by the following proposition.

Proposition 2. Consider the DC–DC boost con-
verter described by the system (33) and the con-
stant reference voltage y∗. Then, for any 0 < ε <
1, and any y∗ such that

ε ≤ θ1
y∗

≤ 1, (34)

there exists a dynamic output feedback control
law such that all trajectories of the closed-loop
system are bounded and lim

t→∞
y(t) = y∗.

Proof. To begin with note that the constraint (34)
is a consequence of the control constraint u ∈
[ε, 1], i.e., if u ∈ [ε, 1] then all equilibria of the
system (33) are such that (34) holds. Consider
now the full-information control law 4

u∗ = sat[ε,1](
θ1
y∗

), (35)

which has been shown in (Rodŕıguez et al., 2000)
to yield asymptotic regulation. Moreover, using
the function V (θ2, y) = 1

2Lθ
2
2 + 1

2Cy
2 − aθ2y,

with 0 < a < min(
√
LC, 2RLCε

2R2Cε+L), it is straight-
forward to prove that, for any u ∈ [ε, 1], the
trajectories of system (33) are bounded.

Consider now the error variable z = θ̂ − θ+ β(y),
with

β(y) =

[

λ1y
λ2y

]

,

where λ1 and λ2 are positive constants, and define
the dynamic output feedback controller

˙̂
θ1 = −λ1

C

(

u
(

θ̂2 + λ2y
)

− 1

R
y

)

˙̂
θ2 = −λ2

C

(

u
(

θ̂2 + λ2y
)

− 1

R
y

)

+
1

L

(

θ̂1 + λ1y − uy
)

,

u = sat[ε,1]

(

θ̂1 + λ1y

y∗

)

.

(36)

As a result, the dynamics of z are given by the
equation

ż =







0 −λ1

C
u

1

L
−λ2

C
u






z . (37)

4 The saturation function is not required in the definition
of u∗ since, from (34), the argument of the saturation is
always in the interval [ε, 1]. It is, however, required in the
construction of the output feedback controller.
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Fig. 6. State and control histories for a change in
the input voltage.

The proof is completed by noting that, for any
0 < ε < 1, it is possible to select λ1 > 0 and λ2 > 0
such that the zero equilibrium of system (37) is
uniformly asymptotically stable. �

Laboratory experiments have been carried out on
the DC–DC boost converter described in detail in
(Becherif et al., 2002). The physical parameters
of the converter are: C = 94 µF, L = 1.36 mH
and R = 120 Ω. The switching frequency of the
PWM is 20 kHz. The desired output voltage is
y∗ = 15 V. The control lower bound ε has been
fixed to 0.1 and λ1 = 0.2 and λ2 = 1 have been set
to ensure uniform asymptotic stability of the zero
equilibrium of system (37). The first experiment
consists of a change in the input voltage E from
10 V to 7 V, at t = 0.02 s. Figure 6 shows
the inductor current x, together with its estimate
x̂ = θ̂2 + λ2y, the output voltage y, the control
signal u, and the input voltage E together with
its estimate Ê = θ̂1 + λ1y. Observe that the
output voltage tracks the desired value, despite
partial state measurement and the change in the
input voltage. In addition, the inductor current
and the input voltage estimates approach the
true values with a static error, which is due to
unmodeled parasitic elements. Note that, even
in the presence of this error, the (static) error
in the output voltage is zero. This very useful
property is due to the inherent integral action in
the controller (36) 5 . Figure 7 shows the response
of the system to a voltage reference change from
y∗ = 15 V to y∗ = 25 V at t = 0.01 s, when
E = 10 V. The output voltage tracks the desired
reference value with a small overshoot.

In contrast with the full-information control
law (35), the controller (36) requires knowledge
of the parameter R. This is a potential drawback,
since in most applications the load is not known

5 Note that from (36), ignoring the saturation, we obtain

˙̂
θ1 −

λ1

λ2

˙̂
θ2 =

λ1

(

θ̂1 + λ1y
)

λ2Ly∗
(y − y∗) .
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precisely. Surprisingly, it can be shown that it is
not necessary to know the precise value of R,
but any constant estimate R̂ within a certain
range can be used in the implementation of the
control law (36), i.e., output voltage tracking is
(locally) achieved despite the uncertainty in the
parameter R. To validate the above argument
select R̂ = 120 Ω. Figure 8 shows the response
of the system to a step change in the load from
R = 120 Ω to R = 60 Ω at t = 0.01 s, for E = 10 V
and y∗ = 15 V. Observe that the estimate of E is
not affected significantly; as a result, the output
voltage is almost insensitive to load changes.

6. ADAPTIVE FLIGHT CONTROL

Flight control systems are traditionally designed
based on linear approximations of the aircraft
dynamics around a large number of operating
points (Stengel, 2004). These local designs are
then combined using gain scheduling in order to
cover the entire flight envelope, a procedure that
is time-consuming and difficult to iterate. This
fact has led in recent years to the wider use of
nonlinear control techniques such as feedback lin-
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Fig. 9. Diagram of the aircraft body axes system.

earisation (Isidori, 1995; Enns et al., 1994; Mor-
ton et al., 1996), and backstepping (Krstić et
al., 1995; Härkeg̊ard and Glad, 2001). The main
drawback of these methods is that they rely on
exact knowledge of the aircraft dynamics and
are therefore particularly sensitive to modelling
errors. This problem can be alleviated by rep-
resenting the uncertainties in the model as non-
linear functions with unknown coefficients and
applying nonlinear adaptive control techniques,
see, e.g., (Sastry and Bodson, 1989; Krstić et
al., 1995; Singh and Steinberg, 1996; Calise and
Rysdyk, 1998; Karagiannis and Astolfi, 2006).

We consider the problem of controlling a rigid-
body aircraft so that it follows a predefined path
in space with desired speed and attitude. The
control actuation is assumed to be represented
by three surface deflection angles (corresponding
to ailerons, elevators and rudder) and the thrust.
The variables that are assumed to be measurable
are position, velocity, Euler angles and angular
rates. The mathematical model used in the design
is that of a six-degrees-of-freedom rigid body of
constant mass, whose attitude is expressed in
standard Euler angles (roll, pitch and yaw) based
on a conventional body axes system, depicted in
Figure 9. The proposed control scheme consists of
the following modules.

1. An adaptive attitude controller that achieves
asymptotic tracking of the roll, pitch and
yaw angles, in the presence of aerodynamic
moments with unknown coefficients.

2. An adaptive airspeed controller that achieves
asymptotic regulation of the airspeed, in the
presence of unknown drag and lift coeffi-
cients.

3. A trajectory tracking controller that pro-
duces the required references for the roll,
pitch and yaw, in order to asymptotically
follow a predefined geometric path.

In addition, the adaptive scheme generates asymp-
totic estimates of the unknown aerodynamic
forces and moments acting upon the aircraft.

6.1 Attitude control

The equations of rotational motion are given by
(Etkin and Reid, 1996)

ϕ̇ = R(ϕ)ω Iω̇ = S(ω)Iω + M, (38)

where ϕ = [φ, θ, ψ]> are the Euler angles, ω =
[p, q, r]> is the angular velocity vector, I =
[I>1 , I

>
2 , I

>
3 ]> is the inertia matrix,

R(ϕ) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ



 ,

S(ω) =





0 r −q
−r 0 p
q −p 0



 ,

and M = [L,M,N ]> are the (unknown) aerody-
namic moments acting on the body.

We first consider the problem of forcing the air-
craft attitude ϕ to follow a smooth reference signal
ϕd by controlling the flaps. For simplicity (and to
ensure that the adaptive control problem is solv-
able) we assume that the aerodynamic moments
can be described by equations of the form

M =







ϑ>1 ρ1(I1ω)

ϑ>2 ρ2(I2ω)

ϑ>3 ρ3(I3ω)






+Bδf , (39)

where δf = [δa, δe, δr]
> are the control inputs,

corresponding to the aileron, elevator and rudder
deflection angles, respectively, ρi(·) are continuous
functions, B ∈ R

3×3 is a known matrix function
and ϑi are unknown parameter vectors.

Define the tracking errors ϕ̃ = ϕ−ϕd, and ω̃ = ω−
R1(ϕ)−1ϕ̇d, where

R1(ϕ)−1 =





1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ



 ,

and the energy function

H(ϕ̃, ω̃) =
1

2
ϕ̃>K1ϕ̃+

1

2
ω̃>I2ω̃, (40)

where K1 = K>
1 > 0 is a constant matrix, and

note that in the new co-ordinates the system (38)
can be written in the perturbed port-controlled
Hamiltonian form (Ortega et al., 2002)

[

˙̃ϕ

I ˙̃ω

]

=

[

0 R1(ϕ)I−1

−I−1R1(ϕ)> S1(ω)

]









∂H>

∂ϕ̃
∂H>

∂(Iω̃)









+

[

0

M + κ(ϕ, ϕd) + ?

]

, (41)

where

κ(ϕ, ϕd) = I−1R1(ϕ)>K1ϕ̃,

? = S1(ω)IR1(ϕ)−1ϕ̇d − IṘ1(ϕ)−1ϕ̇d

−IR1(ϕ)−1ϕ̈d.

Consider now the parameter estimation errors

zi = ϑ̂i − ϑi + βi(Iiω), (42)

for i = 1, 2, 3, where βi(·) are continuous functions
to be defined. A control law δf , which drives



to zero the Hamiltonian function (40) along the
trajectories of (41) when zi = 0, is given by

δf = −B−1







(

ϑ̂1 + β1(I1ω)
)>
ρ1(I1ω)

(

ϑ̂2 + β2(I2ω)
)>
ρ2(I2ω)

(

ϑ̂3 + β3(I3ω)
)>
ρ3(I3ω)







−B−1 (κ(ϕ, ϕd) + ?+K2Iω̃) ,

where K2 is a positive definite matrix function.
The resulting closed-loop system can be written
in the perturbed Hamiltonian form

[

˙̃ϕ

I ˙̃ω

]

=

[

0 R1(ϕ)I−1

−I−1R1(ϕ)> S1(ω) −K2

]









∂H>

∂ϕ̃
∂H>

∂(Iω̃)









−
[

0
∆

]

, (43)

where each element of the perturbation vector ∆
is given by

∆i = z>i ρi(Iiω). (44)

Note that the system (43) is converging-input
converging-state stable with respect to ∆, for any
K2 > 0, and has an asymptotically stable equilib-
rium at the origin when ∆ = 0. We now design
the functions βi(·) so that the perturbation (44)
is driven asymptotically to zero. To this end, con-
sider the estimation errors (42) and the dynamic
update laws

˙̂
ϑi = − ∂βi

∂(Iiω)
[Iiω̇ + ∆i] . (45)

Note that the term in brackets is a function of ϕ, ω
and the first and second derivative of ϕd, therefore
it is measurable. Using (45), the dynamics of the
variables zi along the trajectories of (43) are given
by

żi = − ∂βi

∂(Iiω)
ρi(Iiω)>zi.

Following the result in (Karagiannis and Astolfi,
2006) we select the functions βi(·) according to

βi(Iiω) = γi

∫ Iiω

0

ρi(s)ds ⇒
∂βi

∂(Iiω)
= γiρi(Iiω),

with γi > 0, yielding the system

żi = −γiρi(Iiω)ρi(Iiω)>zi, (46)

which has a uniformly globally stable equilib-
rium at zero. In particular, the Lyapunov func-
tion W (z1, z2, z3) =

∑3
i=1

1
γi

|zi|2 is such that

Ẇ = −2|∆|2, which implies that the perturbation
signal ∆ is square-integrable. Asymptotic stability
of the zero equilibrium of system (43)-(46) follows
by considering the Lyapunov function H(ϕ̃, ω̃) +
W (z1, z2, z3) and invoking similar arguments as in
(Karagiannis and Astolfi, 2006).

6.2 Airspeed control

The translational dynamics of the aircraft are
given by

mν̇ = S(ω)mν +mgε(φ, θ) + F + T , (47)

where ν = [u, v, w]> is the velocity vector,m is the
aircraft mass, g is the gravitational acceleration,
ε(φ, θ) = [− sin θ, sinφ cos θ, cosφ cos θ]

>
, F =

[X,Y, Z]> are the aerodynamic forces, and T =
[Tx, 0, 0]> is the thrust (along the x body axis).

Consider now the problem of finding a control law
for the thrust Tx that regulates the total airspeed
V = |ν| to a desired constant Vd. We assume that
the aerodynamic forces acting on the aircraft are
constant and unknown

To begin with define the kinetic energy error

E =
1

2
m
(

V 2 − V 2
d

)

(48)

and note that, from (47), the dynamics of E are
given by

Ė = ν>mgε(φ, θ) + ν>F + uTx. (49)

Define now the estimation error z̃ = F̂ −F+ β̃(ν),
where β(·) is a continuous functions to be defined,
and the control law

Tx = − 1

u

[

ν>
(

F̂ + β̃(ν)
)

+ν>mgε(φ, θ)+κ(V )E
]

,

where κ(V ) is a positive function. Selecting the
update law

˙̂
F = −∂β̃

∂ν

[

S(ω)ν + gε(φ, θ) +
1

m

(

F̂ + β̃(ν) + T
)]

yields the closed-loop system

Ė = −κ(V )E − ν>z̃, ˙̃z = − 1

m

∂β̃

∂ν
z̃. (50)

Finally, an appropriate selection of κ(V ) and
β̃(ν) ensures that the cascaded system (50) has
a globally stable equilibrium at the origin with
E converging to zero. Two such selections are
κ(V ) = k, β̃i(ν) = γiν

3
i and κ(V ) = kV 2, β̃i(ν) =

γiνi, with k > 0, γi > 0. Note that the first
selection, similarly to the attitude control case,
ensures that the perturbation signal ν>z̃ in (50) is
square-integrable.

6.3 Trajectory tracking

Consider now the problem of finding a reference
ϕd such that, when ϕ = ϕd, the aircraft converges
to a predefined geometric path. For simplicity, we
assume that the path to be tracked consists of
straight lines or arcs of circles in the x-y plane,
while the desired altitude h is constant. Note,
however, that the proposed approach can also be
used to track more complex paths.



The translational motion of the aircraft’s centre
of gravity is described by the equations

ẋ = (u cos θ + v sinφ sin θ + w cosφ sin θ) cosψ
− (v cosφ− w sinφ) sinψ,

ẏ = (u cos θ + v sinφ sin θ + w cosφ sin θ) sinψ
+ (v cosφ− w sinφ) cosψ,

ḣ = u sin θ − (v sinφ− w cosφ) cos θ.

Using the identity

a sinψ + b cosψ =
√

a2 + b2 sin(ψ + arctan(
b

a
))

=
√

a2 + b2 cos(ψ − arctan(
a

b
)) (51)

the equations of motion can be rewritten as

ẋ = V1 cos γ cosψ − (v cosφ− w sinφ) sinψ,

ẏ = V1 cos γ sinψ + (v cosφ− w sinφ) cosψ,

ḣ = V1 sin γ,

where V1 =
(

u2 + (v sinφ+ w cosφ)
2)1/2

and

γ = θ − arctan(
v sinφ+ w cosφ

u
). (52)

For wings-level, non-sideslipping flight (i.e., φ =
0, v = 0), the variable γ represents the path angle,
while V1 is equal to the total airspeed V . Applying
the identity (51) once more yields the system

ẋ= V2 cosλ, (53)

ẏ = V2 sinλ, (54)

ḣ= V1 sin γ, (55)

where V2 =
(

(V1 cos γ)
2

+ (v cosφ− w sinφ)
2)1/2

and

λ = ψ + arctan(
v cosφ− w sinφ

V1 cos γ
). (56)

Note that for wings-level, non-sideslipping flight,
the variable λ represents the heading, while V2 is
equal to V cos γ.

The trajectory tracking problem for the planar
system (53)–(54), i.e., the problem of tracking a
given time-varying reference xd, yd by controlling
λ, has been studied extensively, see, e.g., (Jiang
et al., 2001; Ren and Beard, 2004). In this work
we are interested instead in tracking a geometric
path defined by equations of the form

es = ax+ by + c = 0 (57)

or

ec = (x− a)
2

+ (y − b)
2 − c2 = 0, (58)

for some a, b and c. Note that, in the case of a
circular path, we must have c 6= 0. In addition, we
require that the altitude h is regulated around a
constant reference hd, i.e., lim

t→∞
h(t) = hd.

We first design λ so that the lines (57) and (58)
are invariant and globally attractive. To this end

consider the dynamics of es and ec which are given
respectively by

ės = V2

√

a2 + b2 sin(λ+ arctan(
a

b
)) (59)

and

ėc = 2V2

√

ec + c2 sin(λ + arctan(
x − a

y − b
)), (60)

where we have used the identity (51). Selecting λ
equal to

λs = − arctan(
a

b
) − arctan(kpes),

or

λs = − arctan(
a

b
) + π + arctan(kpes),

with kp > 0, ensures that es converges asymptot-
ically to zero, while selecting λ equal to

λc = − arctan(
x − a

y − b
) − arctan(kpec),

or

λc = − arctan(
x − a

y − b
) + π + arctan(kpec),

ensures convergence of ec. Note that for each line
there are two different control laws that drive
the system onto the desired path in opposite
directions.

Consider now the system (55) and the control law

γ = − arctan(kh(h− hd))

with kh > 0, yielding the closed-loop dynamics

ḣ = −V1
kh(h− hd)

(

1 + (kh(h− hd))
2)1/2

.

The above system has a globally asymptotically
stable equilibrium at h = hd, hence the altitude
converges to its reference value. Note finally that,
given λ and γ, it is possible to select θ and ψ so
that (52) and (56) hold, with φ a free variable.
For straight flight we typically choose φ = 0
(or, more generally, φ = nπ, where n is an
integer), while in the case of a steady coordinated
turn along the path (58) we select φ according
to 6 φ = arctan( G

cos α ), where G = V 2/(gc) is the
centripetal acceleration (in g’s).

6.4 Simulations

The proposed controller has been implemented in
a MATLAB/SIMULINK environment and com-
bined with a detailed model of the Eclipse flight
demonstrator developed at Cranfield University.
Note that the model includes also actuator dy-
namics, which have been neglected in the con-
trol design. Moreover, we have assumed that the

6 This equation gives the condition for turn coordination
when the sideslip and path angle are zero. For a more
general condition, see (Stevens and Lewis, 2003, p. 190).
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Fig. 10. Trajectory of the aircraft.

aerodynamic moments are linear functions, i.e.,
ρi(Iiω) = [1, Iiω]

>
in (39), and all parameter esti-

mates are initialised at zero. The purpose of the
simulations is to verify the asymptotic tracking
properties of the controller, both during standard
demonstration manoeuvres (climb, steady turn,
dive), and non-standard ones (such as a 180-
degree roll). The flight plan includes the following
sectors.

(1) Initial speed 26 m/s. Climb from 30 m to 60
m at a rate of 12 m/s.

(2) Accelerate to 42 m/s.
(3) Perform a 180-degree turn of radius 200 m

(at roll angle 43 deg).
(4) Perform a 180-degree roll.
(5) Perform a 180-degree turn of radius 200 m

(at roll angle 137 deg).
(6) Resume level flight.
(7) Perform two successive 270-degree turns of

radius 110 m (at roll angle 60 deg).

The trajectory of the aircraft is shown in Fig-
ure 10. The aircraft follows the desired trajectory
with zero tracking error for the airspeed and atti-
tude and zero steady-state error for the altitude,
despite the lack of information on the aerody-
namics and despite the fact that we have used
a simplified aerodynamic model for the design.

7. CONCLUSION

Adaptive control of linear time invariant systems
is a well–established discipline whose major the-
oretical issues have been fully sorted out and the
main plant structural obstacles clearly identified.
Many successful applications of adaptive control
for linear plants have also been reported in the
literature. Adaptive control of nonlinear systems,
on the other hand, is a active research area where
many questions remain to be answered. The main
difference with respect to the case of linear plants

is that the system in closed–loop with the known
parameter controller still depends (in general) on
the unknown parameters. (A notable exception to
this rule are robot manipulators and, more gen-
erally, Euler–Lagrange systems, see e.g. (Ortega
et al., 1998b).) Consequently, the Lyapunov func-
tion, which is typically used to establish stabil-
ity, is also a function of the parameters, and is
hence unknown. The classical procedures to ad-
dress the nonlinear adaptive control problem have
been reviewed in (Astolfi and Ortega, 2003; Astolfi
et al., 2007)–we refer the interested reader to
these references–where it is indicated that there
is a clear predominance in the literature of the
so–called adaptive backstepping approach, which
assumes that the effect of the parameters can
be rejected when considered as disturbances with
known derivative. This leads to the so-called ex-
tended matching condition that, as is well known
(Krstić et al., 1995), is (essentially) satisfied only
by systems in triangular forms. Furthermore, the
requirement of linear parameterization is essential
for the application of backstepping techniques.
The I&I approach proposed adopts a robustness–
instead of disturbance rejection–perspective that
does not rely on matching nor linear parametriza-
tion. The fact that several physical systems are
not in triangular form nor depend linearly on the
unknown parameters provides a clear practical
motivation for adaptive I&I. The proposed tech-
nique yields non-certainty equivalent controllers
and does not postulate a-priori the existence of
a Lyapunov function for the closed-loop system.
However, if a Lyapunov perspective is adopted for
the stability analysis, I&I naturally incorporates
in the Lyapunov function cross terms between the
plant states and the estimated parameters.

We have presented the basic theoretical tools of
adaptive I&I and illustrated its applicability with
some physically motivated problems. Even though
adaptive I&I has been introduced to deal with
nonlinear systems it is interesting to note that it
has been instrumental also for the solution of some
adaptive problems for linear systems. Namely, ro-
bust stabilization of relative degree one MIMO
plants (Ortega et al., 2003) and performance im-
provement of model reference schemes (Astolfi et
al., 2007).
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