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Abstract: This paper focuses on the peak to peak norm and the generalized Ho
norm of linear discrete-time periodic systems. First, sufficient conditions based on
matrix inequalities are given. Then, based on them, the disturbance attenuation
problem is taken as an example to show the application of the derived results.
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1. INTRODUCTION

Periodic system theory has been under continuous
development in the last decades. While differ-
ent norms have been proposed for characterizing
the robustness of linear time-invariant systems
(Scherer et al., 1997), in the literature on pe-
riodic systems the most attention has been fo-
cused on the H; norm and the H,, norm. In
the frequency domain, the parametric transfer
function (Lampe and Rossenwasser, 2004; Lampe
et al., 2005), the harmonic analysis (Zhou and
Hagiwara, 2002) and the lifting based methods
(Varga, 2006) have been proposed. In the time
domain, Riccati equation, Riccati inequality (Xie
and de Souza, 1991; Colaneri, 2000) and lin-
ear matrix inequality (LMI) based approaches
(Bittanti and Cuzzola, 2001a; Bittanti and Cuz-
zola, 2001b) have been presented.

As it is often difficult to get an exact model of
the system, model uncertainties present one of the
challenges in control and estimation problems. In
(Xie and de Souza, 1991), norm-bounded uncer-
tainty has been considered in the H., filtering
of the linear continuous-time periodic systems.
Both norm-bounded uncertainty and polytopic

uncertainty have been discussed by (Souza and
Trofino, 2000) regarding the stabilization problem
of the linear discrete-time periodic (LDP) sys-
tems. More recently, the Hs norm of the LDP
systems with polytopic uncertainties has been in-
vestigated in (Farges et al., 2007).

In this paper, we shall focus on the peak to peak
norm and the generalized H; norm of the LDP
systems. We shall also consider the influence of
norm-bounded and polytopic model uncertainties
on these norms. To the authors’ knowledge, the
generalized Hy norm of the LDP systems has not
yet been considered. The peak to peak norm has
been handled by (Voulgaris, 1996; Aubrecht and
Voulgaris, 2001). In (Voulgaris, 1996), an estima-
tor that minimizes the peak to peak norm from
the disturbances to the estimation errors is de-
signed using the lifting and model matching tech-
nique. A state feedback controller is synthesized
in (Aubrecht and Voulgaris, 2001) to minimize
the peak to peak norm of the closed-loop system
by constructing a periodic controlled invariance
kernel. In comparison, the solutions presented in
this paper employ the matrix inequality technique
that can be easily implemented with the help of
the standard MATLAB toolbox. This work is mo-



tivated by our recent study on networked control
systems (NCS), in which the theory of periodic
systems can be applied from different viewpoints
(Ding et al., 2006; Zhang and Ding, 2006).

This paper is organized as follows. After the def-
inition of the norms in Section 2, LMI character-
izations of the norms will be given in Section 3.
We include here also the extended LMI character-
izations obtained by using the relaxation variable
technique introduced in (de Oliveira et al., 1999).
Then, norm-bounded uncertainty and polytopic
uncertainty will be considered in Section 4 and 5,
respectively. Finally, in Section 6 we shall consider
the control and estimation problem to meet the
specifications on robustness.

2. DEFINITIONS

In this paper, we consider the LDP system X
described by

ok +1) = Aga(k) + Brd(k)
y(k) = Crz(k) + Dyd(k) (1)

where x € R™ denotes the state vector, d € R™
the input vector, y € R™ the output vector,
Ay, By, Cy, Dy, are known real periodic matrices
of period T, i.e., Vk,

Apsr Bryr | _ | Ak By
Crir Diyr Ck Dy

The peak to peak norm of the LDP system (1)
is the induced norm with both the input signal
and the output signal measured by the maximal
amplitude, i.e.,

llyll
. sup Wl 2
|| Hpeak d€log,d£0 Hd”oo ( )

where |lyll, = supy /' (k)y(k) and [l =
sup,, \/d'(k)d(k) denote the lo-norm of the input

and output signals, respectively.

The generalized Hy norm of the LDP system (1) is
the induced norm with the input signal measured
by the energy and the output signal measured by
the maximal amplitude, i.e.,

Iylc -

=1,  deta,dz0 |4,

where ||d||, = Zy ) denotes the lo-norm
k=0
of the input signal. Note that [|G||, is finite only

if Dy, =0.

3. LMI CHARACTERIZATIONS

Theorem 1 (Peak to peak norm) Given the
LDP system X described by (1) with zero initial

conditions and a real number 8 > 0, then X is
stable and ||| .., < 3, if there exist a T-periodic
matrix P, > 0 and T-periodic real numbers \; >
0 and gy, such that

—Pr. + A\ P, O A;CP}C+1
O —pt B}/CP;C+1 <0 (4)
Piy1Ar PeyaBr —Pei

P 0 CL
0 (B—p) Dy | >0 (5)
Ck Dy, BI

Proof: Define a periodic Lyapunov function for
the LDP system (1) as

V(x(k)) = o' (k) Pea (k) (6)

where P11 = P, > 0. From Schur lemma, (4) is
equivalent to

A Pri1 Ag — Py + M P

o A} Pri1 By
k= B}, Pyi1 Ay

B;CPk+1Bk — Mk-[
<0

From Py > 0 and A} Pr41 A — P, <0, it is clear
that X is stable. Moreover,

V(w(k+1)) =V (x(k)+ XV (2 (k) —p,d’ (k)d(k)
= [2/(k) d'(k) | ¥ [ Eg” <0, Vz,d
which means that

MV (@(k)) — ppd (k)d(k) < 0, Va,d

As (5) is equivalent to

[/\kopk » —Ouk)f} >3- [D;] [C Dy ]

there is

o (R)y(k)
Ak P 0 z(k)
<Al }[ 0 (B—p)l Hdd
— B2 (K)d(k) + BV (2 (k)) — e (R)d(R))
< B (k)d(k)
Thus, [[G,,ex < B m

Theorem 2 (Generalized Hy norm) Given the
LDP system ¥ described by (1) with Dy, = 0 and
zero initial conditions and a real number v > 0,
then ¥ is stable and ||X[|, <, if and only if there
exist a T-periodic matrix Py > 0 such that

—Pk O A%P]@Jrl
O —I B;ng+l <0 (7)
Pyy1Ak Pey1Br —Pria

P, C,
[Ck 2T >0 (8)

Proof: Assume that (6) is a periodic Lyapunov

function of the LDP system (1). Note that (7) is

equivalent to

A} P11 Ay — Py
B} Py 1Ay,

A} Pyy1 By,

Vi = By Poy1 By — 1

<0



As P, > 0 and A} P14, — P, < 0, it implies
that X is stable. Moreover, (7) holds if and only if

which means that
k—1
V(z(k) < _d'(j)d(), Va,d
=0

Taking (8) into account, we have

k—1
Y (R)y(k) < 2°V(x(k)) <~* Y d'()d())
=0
Le, |G], <7 |

If we introduce the so-called relaxation variables
(de Oliveira et al., 1999) to decouple the Lyapunov
variable from the system matrices to provide later
more design freedom, then we obtain theorems 3-4
as follows.

Theorem 3 (Peak to peak norm) Given the
LDP system X described by (1) with zero initial
conditions and a real number 8 > 0, then X is
stable and [|X]| .., < B, if there exist T-periodic
matrices Py > 0, Gy, and T-periodic real numbers
A > 0, pi,, so that (5) and the following matrix
inequality hold

P+ P, O A;G;C
O —p L B,;G;C <0
GLA; GiBy Pyy1— Gy — G;C

(9)
Proof: Assume that (5) and (9) hold for some
P, > 0,Gg, A > 0, ;.. Pre- and postmultiplying
(9) by 'y, and I'}, respectively, where

ro_[104
¥~ oI B,

As T is a matrix of full row rank, we get (4), i.e.,
the same matrices P, > 0, A\, > 0, p,, satisfy (4)-
(5). Recalling Theorem 1, the LDP system (1) is
stable and its peak to peak norm is smaller than
B. Indeed, if (4)-(5) hold for some P, > 0, A\, > 0
and gy, then (5) and (9) are satisfied by the same
P, > 0,A\; > 0,8,,p, and Gy = Pgyq. That
means, the conditions (5) and (9) are equivalent
with (4)-(5). |

Theorem 4 (Generalized Hy norm) Given the
LDP system ¥ described by (1) with Dy = 0 and
zero initial conditions and a real number v > 0,
then ¥ is stable and ||X[|, <, if and only if there
exist T-periodic matrices P, > 0 and Gy, so that
(8) and the following LMI hold

P O ALG,
o -I B.G), <0 (10
GrAy GiBy, Pos1 — Gi — Gy

The proof is similar with that of Theorem 3 and
thus omitted here.

In the following, we give equivalent conditions
for the peak-to-peak norm and the generalized
Hy norm, respectively. These conditions can be
readily used for the design of state feedback con-
trollers, while the conditions presented above are
more convenient for the observer design.

Lemma 1 (Peak to peak norm) Given the LDP
system X described by (1) with zero initial condi-
tions and a real number 8 > 0, then X is stable
and |||, < B, if any of following conditions
holds:

(1) there exist a T-periodic matrix @ > 0 and
T-periodic real numbers Ax > 0, 1, such that

—Qr +MQr O QrA} ]
0 I B. | <0 (11
ArQx By —Qp+1 |
Ak Qk 0 QrCy |
0 (B-—m)I Dy | >0 (12)
CrQr Dy pI |

(ii) there exist T-periodic matrices Qr > 0, Gy,
and T-periodic real numbers A, > 0, y,, such that

M —1D(Ge+G,—Qx) O GLAL
@) —uI B, | <0
ARGy By —Qk1
(13)
Ak(Gr + G, — Q) 0 G.Cy,
0 (8= p)I Dy | >0
C/CG].c Dk ﬁl
(14)

Proof: At first, we prove that condition (i) is
sufficient for [|X],,,;, < 8. Assume that (11)-(12)
are satisfied by some Q > 0, A\ > 0, 11;,. Let

P, O O P, OO
P=Q. '\ Ty=|01 O |,Ty=|0 10
O O Py 001

Pre- and postmultiplying (11) by T and T7,, re-
spectively, yields (4). Similarly, pre- and postmul-
tiplying (12) by Tbx and T}, yields (5). According
to Theorem 1, ¥ is stable and [|X|[ .., < 8.

In the next, we show that (13)-(14) are equivalent
with (11)-(12). If (11)-(12) hold for some Q) >
0, A\t > 0, iy, then (13)-(14) are satisfied by the
same Qr > 0, A > 0,y and Gy = Q. Assume
now (13)-(14) hold for some Qi > 0,Gj, A\ >
0, By, tty;- Pre- and postmultiply (13) ((14)), re-
spectively, by 'y, and '}, (I'2x and I',), where

O -I0
Flk‘: 1
A I

N —17F ©

[ 0 -1 0
FQk: 1

— I

_Akok O




As Ty and 'y, are of full row rank, we get

—pd By,
By —Qr41 — ﬁAkaAZ ] >0
(B — )1 {);f ] —0
Dy Byl - rkachllc

which are equivalent to (11)-(12) according to
Schur lemma. Thus, condition (ii) is equivalent
with condition (i) and is the sufficient condition
for ||X|[,car < B ]

Lemma 2 (Generalized Hy norm) Given the LDP
system X described by (1) with Dy = 0 and zero
initial conditions and a real number v > 0, then
the following conditions are equivalent:

(i) X is stable and [|X]|, <,

(ii) there exist a T-periodic matrix Qx > 0, s.t.
— By, A,

%’7+1 7? kOQk Qk chllq 0
k Qi I |7

QrA, O —Qy Wk

(iil) there exist T-periodic matrix Q > 0 and G},

such that

<o,

—Qi+1 B ALGy,
B, I 0 <0 (15)
GrA, O Qr—Gr—G,
Gr+ G, — Qi G,.C,

) ey U

4. NORM-BOUNDED MODEL
UNCERTAINTY

In this paper, two different kinds of model uncer-
tainties will be studied. In this section, we shall
consider the LDP system (1) with system matrices

Ar Br | | Ako Bro + AA, ABy, (17)
Cr Di| | Cro Dio AC, ADy,

where the uncertainties are norm-bounded and
described by

AA, AB,] _ [Ey
[Ack ADJ - [Fk:| B [ M N] - (18)

with Ako, Bro, Cros Dkos By Fiy My, Ny known T-
periodic matrices, €2 unknown but bounded, Vk,

. Q, < I. To cope with the model uncertainty,
Lemma 3 is introduced (Cao and Lam, 2000).

Lemma 3 For any given constant matrices
G1, G2, G3, a positive definite matrix P, an uncer-
tain matrix Q of compatible dimensions, Q' < I,
and for any € > 0 that satisfies P~1 > eG5Gs,
there is always

(Gl —+ GQQGg)P(G1 + GQQG,?,)/
<GP~ GhGs) NG+ GaGh (19)

Theorem 5 (Peak to peak norm) Given the LDP
system ¥ described by (1) with norm-bounded
model uncertainties (17)-(18). For a given real
number 3 > 0, ¥ is stable and |||, < 8, if
any of the following conditions holds:

(1) there exist a T-periodic matrix P, > 0 and T-
periodic real numbers A\, > 0,1, > 0,€2x > 0,
so that

—Pp4+ Py 0 A;gopk—&-l O M]g
0 —md  BpPeyn O N

Pri1 Ao Pry1Bro —Pri1 PrpEp O
0 O  E Py —ejl O
Mk Nk O O *81]6]
<0 (20)
MPe O c. M
@) (6 - /Lk)l ;co Nl/a >0
Cro Do BI —eaFrF;, O
Mk Nk 0] €2kI
(21)

(ii) there exist T-periodic matrices P, > 0,Gj
and T-periodic real numbers Ay > 0,,e1x >
0,69, > 0,pu, so that (21) and the following
matrix inequality hold

A O ALG, O M
0o -l B.G\ O N
GrAgo GpBro Aszs GrpEp O <0
0] O E\G, —;'T O
M, Ni, 0] O —el
Ay = =Py + APy Asy = Py — G — G,

(iii) there exist T-periodic matrices Qr > 0, G
and T-periodic real numbers Ay > 0,1 >
0,e9r > 0, p4y,, such that

011 0 GLA,, G.Mj]
O —ml By, N
AroGr Bro ©33 O
Mka Nk o —Elkl
Hll O G,;ccl/co G;CM]/C
0 (ﬁ - ﬂk)I D;co Nllc
CkoGr  Dio 33 O
Mka Nk 0] Egkl

<0

>0

O = ()\k — 1)(Gk + G;C - Qk)

O33 = —Qr11 + 1 Er By,

1 = M\(Gr + G, — Qk)

33 = BI — eg F1, Fy,
Proof: At first, we show that ||X[[,.,, < B if
condition (i) is satisfied. Let G1x = [ Ago Bko}',

G = [Mk N ]/. From Schur lemma, (20) holds
if and only if P, — e1xExEj, > 0 and

—Pr+\pe P, O 4 i
o —py €1k

_ -1
+ G (P — e1eEuEy)

Gax Gy,

%<0 (22)



According to Lemma 3, if (22) holds, then for any
Q, satisfying ) Qy < I there is

—Pr+A P, O
0 —pd
+ (G +Gor U EL) P(G +Gop QL Ef) < 0

i.e. (4) holds. It can similarly proven that (5) holds
if (21) holds. Thus, if condition (i) is satisfied, then
¥ is stable and 2], < 8. Note that condition
(ii) and (iii) are equivalent to condition (i). The
theorem is proven. |

Theorem 6 (Generalized Hs norm) Given the
LDP system X described by (1) with norm-
bounded model uncertainties (17)-(18). For a
given real number v > 0, ¥ is stable and |||, <
v, if any of the following conditions holds:

(1) there exist a T-periodic matrix P, > 0 and T-
periodic real numbers €15 > 0,9, > 0 such that

P, 0 AP O M,
%) I B.P4w O N
Pii1Ake Pev1Bro —Piy1 PoiEr O

O O  EiPe1 —ej il O
Mk Nk (@) O *Elkf
<0 (23)
b, Cro M,
Cro VI — e, FyF, O | >0  (24)
Mk 0 Egk-f

(ii) there exist T-periodic matrices P > 0, G, and
T-periodic real numbers €13 > 0, &9, > 0, so that
(24) and the following matrix inequality hold

B0 WA o M
o I B..Gl o N
GrAko GiBro Pii1 — Gr — G), GLE, O
0 O E,G, -1 0
Mk) Nk O O _Elkl
<0

(iii) there exist T-periodic positive definite ma-
trices @Qr > 0,G) and T-periodic real numbers
€1k > 0,e9, > 0, such that

Qr—Gr—G, O Gl Ak, G M,
O -1 By, N;,
AkoGl Bio —Qr+1 +enExE;, O
Mka Nk O *51k1
<0 (25)
Gi+G,—Qr GG,  GM
CroGr VI —eqpFxF, O | >0
Mka O €2k1
(26)

5. POLYTOPIC MODEL UNCERTAINTY

In this section, we shall consider the LDP system
(1) with polytopic model uncertainty, i.e.

A B | - Aji B
|:Ck Dk] B 2”1' Cri Dy 27)
i
where Agi, Bii, Cki, Diiy @ = 1,2, ,pg, are
known T-periodic real matrices, p;,i =1,2,--- ,p,
are unknown quantities but satisfy p; > 0,

P

=1 P = L

Theorem 7 (Peak to peak norm) Given the LDP
system X described by (1) with polytopic model
uncertainty (27). For a given real number 5 > 0, X
is stable and ||X][ ., < 8, if any of the following
conditions holds:

(i) there exist T-periodic matrices P, > 0 and
T-periodic real numbers Ay > 0, yi;,, such that
—P + M\ Py 0 A;W-Pk+1
O —,ukl Bllﬂ»P]H_l <0
Pyi1Agi Pry1Bri —Prpa
0 (8—m) Dy,
Chi Dy;  BI

(ii) there exist T-periodic matrices Gy, Pg; > 0,

>0,i=1,,p

1=1,2,---,p, and T-periodic real numbers \; >
0, i1y, such that
—Pri + \Pri O 1iG,
G Ak GiByi Pis1i— G — Gy,

0 (6 - Mk)l D;m'
Chi Dy pI

(iii) there exist T-periodic matrices G, Qx; > 0,
i=1,2,---,p, and T-periodic real numbers A\; >
0, gy, such that Vi =1,--- ,p,

>O7 i:1,27"'ap

M —D(Ge + G, = Qri) O GLAL
0] —ul By, <0
AkiGr By —Qry1
Me(Gr + G, — Qi) 0  G,Cp
0 G-l D, |>0
CriG Dy, Bl

The proof of theorems 7 is easily obtained by
noticing the linearity of (27) and thus omitted
here. We would like to point out that comparing
conditions (i) with (ii) and (iii) shows clearly the
advantage of introducing the relaxation variable
G, which allows the Lyapunov variable Py and
Q1. to be vertex dependent.

Theorem 8 (Generalized Hy norm) Given the
LDP system X described by (1) with polytopic
model uncertainty (27) and a real number v > 0,
then X is stable and ||X[ .., < 7, if any of the
following conditions hold:

(1) there exist T-periodic positive definite matrices
P, > 0, such that Vi = 1,2,--- ,p,

—Pk o Agm'PkJrl
19 I BLPu
Py 1Ay Pey1Bri —Prp

<0,{CM Si>0



(ii) there exist T-periodic positive definite ma-
trices Gg, Px; > 0, ¢ = 0,1,---,p, such that
i:1727"’ » Dy
Py O ALG,
O -1 B,G,
GrAri GpBri  As3
As3 = Py, — G — G,

Pyi Cy;

<0,{CM 721] >0

6. CONTROLLER AND OBSERVER DESIGN

Based on the results presented in Section 3-5,
it is straightforward to design controllers and
observers for the LDP systems with and without
model uncertainty. Due to the space limitation, in
this section we only give an example of controller
design.

Consider an LDP system described by
z(k+ 1) = Agz(k) + Bju(k) + Bild(k)
y(k) = Cra(k) + Diu(k) + Did(k) ~ (28)
where u is the control input vector and d the

disturbance input vector. Assume that the state
feedback control law

u(k) = Ky (k) (29)

is used, where K} is a T-periodic gain matrix,
for the purpose of disturbance attenuation. The
closed-loop dynamics Y; is governed by

w(k +1) = (A + By Ky)a(k) + Bild(k)
y(k) = (Cr + DiKp)z(k) + Diid(k)  (30)

As an example, Theorem 9 shows how to design
the feedback gain matrix K to satisfy the speci-
fications on the peak to peak norm.

Theorem 9 (Controller design) Given the nomi-
nal LDP system (28), control law (29) and a real
number 8 > 0. The closed-loop dynamics (30)
is stable and [|Zc[,.,p < B, if there exist T-
periodic matrices Q. > 0,Gy, Yy and T-periodic
real numbers A\, > 0, i1y, such that

(M —1D)(Gr+ G, — Q) O GLA +Y(B)

0 — L (B,f)'
ApGy + BlYy BY —Qri1
<0 (31)
[ Ak (Gr + G — Qi) 0 G.C, + Y (DY)
0 (B — )l (D)
CyGy + DYy, D¢ BI
>0 (32)

The corresponding controller gain can be set as
Ky = Y,G; b

The proof consists in applying Lemma 1 and using
the variable substitution K Gy = Y}. It is omitted
here due to space limitation.

7. CONCLUSION

In this paper, the matrix inequality technique is
applied to study the norms, in particular the peak
to peak norm and the generalized Hy norm, of
linear discrete-time periodic systems. First, the
specifications on norms are expressed by matrix
inequalities. Then, based on them, the distur-
bance attenuation problem is taken as an example
to show the application of the derived results.
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