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Abstract
It is known that the growth of a cancerous tumor is

well described by the Gompertz’s equation. The ex-
isting explanations for this equation rely on specifics
of cell dynamics. However, the fact that for many
different types of tumors, with different cell dynam-
ics, we observe the same growth pattern, make us be-
lieve that there should be a more fundamental expla-
nation for this equation. In this paper, we show that a
symmetry-based approach indeed leads to such an ex-
planation: indeed, out of all scale-invariant growth dy-
namics, the Gompertzian growth is the closest to the
linear-approximation exponential growth model.
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1 Introduction
Cancer growth is Gompertzian: an empirical fact.
It is known that the dependence of the size n(t) of the
growing cancer tumor on time t is well described by
the Gompertzian equation

dn

dt
= a · n− b · n · ln(n); (1)

see, e.g., [Frenzen and Murray, 1986; Kendal, 1985;
Kozusco and Baizer, 2003; Norton, 1988; Tracqui,
2009; West et al., 2016], and references therein.

How Gompertzian groth is explained now. At
present, the Gompertzian character of the cancerous
tumor growth is explained by the specific features of
cell dynamics; see [Frenzen and Murray, 1986; Kendal,
1985; Kozusco and Baizer, 2003; Norton, 1988; Trac-
qui, 2009; West et al., 2016].

Need for a more general explanation. Cancer is a
general name for many very different diseases, with

different cell dynamics. The fact that the same Gom-
pertzian growth is observed in all kinds of cancers
make us believe that there is a more fundamental expla-
nation for the ubiquity of equation (1), an explanation
that does not depend on the specifics of cell dynamics.

What we do in this paper. In this paper, we show that
natural symmetry ideas can indeed provide the desired
general explanation for the Gompertzian growth.

2 Growth: A General Idea
Our goal is to find the right-hand side f(n) of the gen-

eral equation

dn

dt
= f(n) (2)

that describes the corresponding growth.
We consider growth, not the emergence of a tumor.

This means that if originally, we had no tumor (n = 0),
there is nothing to grow, so we should have f(n) = 0.
In other words, the desired function f(n) should have
the property f(0) = 0.

3 First Approximation Model: Description and
Limitations

Growth: first approximation leads to the exponen-
tial growth. From the practical viewpoint, the earlier
we diagnose the cancer, the better our chances of cur-
ing it. Thus, it is very important to emphasize the ini-
tial stages of the growth, when the size n of the tumor
is still small.
When n is small, a reasonable idea is to expand the

function f(n) in Taylor series and keep only the first
terms in this expansion. Since f(0) = 0, the first non-
linear term in the Taylor expansion of this function is a
linear term f(n) = c · n. The resulting equation

dn

dt
= c · n (3)
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leads to the known exponential solution

n(t) = n(0) · exp(c · t).

Need to go beyond a simple exponential growth
model. The exponential growth model well describes
the initial growth stage, when the tumor is still small.
However, it cannot describe all the stages, since:

• in the exponential growth model, the size of the
tumor tends to infinity, while

• in real life, this size is limited – e.g., by the size of
the corresponding organ.

It is therefore reasonable to modify the simple expo-
nential growth model, to get a more realistic descrip-
tion of the tumor growth.

4 How Can We Generalize? Enter Symmetries
How can we go beyond the simple exponential
growth model? To generalize the exponential growth
model, a natural idea is:

• to select important features of this model, and then
• to see which more general models are possible that

preserve these important features.

Why symmetries. Which features should we select?
To make this decision, let us recall that one of the main
objectives of science in general is to predict what will
happen:

• what will happen if we do not interfere, and
• what will happen if we perform a certain interfer-

ing action.

How can we predict? There are many prediction meth-
ods, but the main idea behind these methods is the
same: to predict what will happen in a given situation:

• we search for similar situations in the past, and
• we predict that in the current situation, the out-

come will be similar to what we have observed in
similar situations in the past.

In particular, if a certain equation was valid in all pre-
vious similar situations, we expect this equation to be
valid in the current situation as well.
From this viewpoint, the most fundamental notion is

the notion of similarity between objects and/or situa-
tions. In mathematical terms, this corresponds to sym-
metries – transformations that preserve important fea-
tures and thus, keep the situation similar.
For example, if we repeat the same experiment at a

later time, we expect the same results – why? Because
we believe that the future situation is similar to the past
one, i.e., that a simple shift in time, from the original
time t to the new time t+ t0, does not change the situ-
ation and is, thus, a symmetry.

With this in mind, let us look for the natural symme-
tries in our growth situation.

Scaling as a natural symmetry. In principle, the size
of the tumor can be described by the number of cancer-
ous cells. However, in practice, even a small tumor, of
size smaller than 1 mm3, contains thousands and mil-
lions of cells. We do not actually count these cells, we
measure the tumor size by its mass or by its volume.
The numerical value of the size therefore depends on

what measuring unit we use. For example, if we re-
place cubic millimeters with cubic microns, the numer-
ical size will increase by a factor of 109. In general,
if we use a different unit, then the original numerical
value n is replaced by a new unit n → n′ = λ · n for
some λ > 0.
From the physical viewpoint, whatever units we use,

the tumor remains the same. It is therefore reasonable
to require that the equations that describe the tumor
growth also do not depend on the choice of the measur-
ing unit, i.e., that they are, in some reasonable sense,
invariant under the corresponding scaling transforma-
tion n → λ · n.

Linear model is indeed scale-invariant. The linear
model (3) is indeed scale-invariant: if we re-scale the
size n, i.e., replace n with λ · n, then we get the exact
same growth rate r = f(n), provided, of course, that
we accordingly change the unit for the growth rate (i.e.,
equivalently, the unit for time).
In precise terms, if we replace n by n′ = λ · n,

then we get f(n′) = const · f(n). In other words,
while the actual function f(n) changes when we re-
scale n, the corresponding 1-parametric family of func-
tions {C · f(n)}C remains unchanged.
Let us use this as a way to generalize the exponential

growth model.

5 1-Parametric Scale-Invariant Growth Models:
Idea, Description, and Limitations

Natural idea. As we discussed earlier, let us con-
sider 1-parametric scale-invariant growth models, i.e.,
growth models f(n) for which the family

{C · f(n)}C

is scale-invariant.

Let us describe all such growth models. Invariance
means that for every λ, the function f(λ · n) belongs
to the family {C · f(n)}C , i.e., that for every λ, there
exists a value C(λ) for which

f(λ · n) = C(λ) · f(n). (4)

To solve this functional equation, let us take into ac-
count physical features of this situation.

It is reasonable to require that the growth rate be
a differentiable function of the tumor size n. In the
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physical world, most processes are continuous. In par-
ticular, we expect that small changes in n lead to small
changes in f(n). It is therefore reasonable to require
that the function f(n) be differentiable – at least, for
the case n > 0.

Let us use this assumption to solve the above equa-
tion. From the equation (4), we conclude that

C(λ) =
f(λ · n)
f(n)

.

Since the function f(n) is differentiable, we conclude
that the function C(λ) is differentiable as well, as a
ratio of two differentiable functions.
Thus, we can differentiate both sides of the equation

(4) with respect to λ and take λ = 1. As a result, we
get the following formula:

n · df(n)
dn

= c · f(n), (5)

where we denoted c
def
=

dC(λ)

dλ |λ=1
. In the equation

(5), we can separate the variables by moving all the
terms containing n to the right side and all the terms
containing f to another. Thus, we get:

dn

n
= c · df

f
.

Integrating both sides, we get ln(n) = c·ln(f)+const,
hence

ln(f) = c−1 · ln(n) + const.

Thus, we get the following formula for f(n) =
exp(ln(f(n)):

f(n) = A · nα, (6)

where α
def
= c−1.

Limitations of the resulting equation. For the growth
rate (5), the corresponding dynamic equation has the
form

dn

dt
= A · nα.

Separating variables in this equation, we get

dn

nα
= A · t.

Integrating both sides, we get

n1−α

1− α
= A · t+ C,

hence n1−α = (1−α) ·(A ·t+C), and n = (a ·t+b)α.
This function has the same limitation as the exponen-

tial growth model: it tends to infinity as t grows, it does
not have any bounds.

Natural idea. Since we did not get a good solution
by considering 1-parametric scale-invariant families of
functions, a natural idea is to consider 2-parametric
families of functions. Let us describe this idea in pre-
cise terms.

6 2-Parametric Scale-Invariant Growth Models:
Idea, Description, and Analysis

Idea. Let us consider 2-parametric scale-invariant
growth models, i.e., functions f(n) that belong to a 2-
parametric scale-invariant family

{C1 · f1(n) + C2 · f2(n)}C1,C2 .

The fact that we only consider differentiable functions
means that both basis functions f1(n) and f2(n) are
differentiable.

Let us describe all such growth models. Invariance
means that for every λ and for every i, the function
fi(λ ·n) belongs to the above family, i.e., that for every
λ, there exists values Cij(λ) for which

f1(λ · n) = C11(λ) · f1(n) + C12(λ) · f2(n), (7)

f2(λ · n) = C21(λ) · f1(n) + C22(λ) · f2(n). (8)

Let us prove that the functions Cij(λ) are differen-
tiable. For each i, we can consider two different values
n1 ̸= n2. Thus, we get a system of two linear equations
for the two unknowns Ci1(λ) and Ci2(λ):

fi(λ · n1) = Ci1(λ) · f1(n1) + Ci2(λ) · f2(n1), (9)

fi(λ · n2) = Ci1(λ) · f1(n2) +Ci2(λ) · f2(n2). (10)

The solution to this system of linear equations can be
described by using the Cramer’s rule:

Ci1(λ) =
fi(λ · n1) · f2(n2)− fi(λ · n2) · f2(n1)

f1(n1) · f2(n2)− f2(n1) · f1(n2)
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and

Ci2(λ) =
fi(λ · n1) · f1(n2)− fi(λ · n2) · f1(n1)

f2(n1) · f1(n2)− f1(n1) · f2(n2)
.

Since the functions fi(n) are differentiable, we con-
clude that the functions Cij(λ) are differentiable as
well.

Let us now differentiate. Since all the functions
f1(n), f2(n), and Cij(λ) are differentiable, let us dif-
ferentiate both sides of the equations (7) and (8) with
respect to λ and take λ = 1. As a result, we get the
following system of equations:

n · df1
dn

= c11 · f1(n) + c12 · f2(n),

n · df2
dn

= c21 · f1(n) + c22 · f2(n),

where we denoted cij
def
=

dCij(λ)

dλ |λ=1
.

This system of equations can be further simplified if
we introduce a new variable x = ln(n) for which dx =
dn

n
, and n = exp(x). In terms of this new variable, we

have

fi(n) = Fi(x) = Fi(ln(n)),

where Fi(x)
def
= fi(exp(n)). Then, the above equa-

tions take the form

dF1

dx
= c11 · F1 + c12 · F2,

dF2

dx
= c21 · F1 + c22 · F2.

This is a system of linear differential equations with
constant coefficients.
Solutions to this system of equations are well known

(see, e.g., [Robinson, 2004]): the functions Fi(x) are
linear combinations of functions of the type exp(α1 ·x)
and exp(α2 ·x), where α1 ̸= α2 are the eigenvalues (in
general, complex) of the matrix cij . In situations in
which we have a double eigenvalue α1 = α2, each of
the functions Fi(x) is a linear combination of the terms
exp(α1 · x) and x · exp(α · x).
Thus, the growth function F (x) = f(exp(n)) (for

which f(n) = F (ln(n))) – and which is itself a linear
combination of the functions F1(x) and F2(x) – is also
a linear combination of the corresponding functions:

• either a linear combination of the functions
exp(α1 ·x) and exp(α2 ·x) corresponding to α1 ̸=
α2,

• or a linear combination of functions exp(α1 · x)
and x ·exp(α1 ·x) (corresponding to the case when
α1 = α2).

Substituting x = ln(n) into these formulas, we con-
clude that the growth functions f(n) = F (ln(n)) is:

• either a linear combination of the functions nα1

and nα2 for some α1 ̸= α2,
• or a linear combination of the functions nα1 and
nα1 · ln(n).

Comments.

• The formula corresponding to α2 = α1 can be
viewed as a limit case of the general formula with
α2 ̸= α1 when we take α2 → α1, i.e., when
α1 = α1 + ε for ε → 0. Indeed, in this case,

nα2 = nα1+ε = nα1 · nε.

Here,

nε = (exp(ln(n))ε = exp(ε · ln(n)) =

1 + ε · ln(n) + o(ε),

thus

nα2 = nα1 · nε = nα1 + ε · nα1 · ln(n) + o(ε).

So, in the limit ε → 0, linear combinations

C1 · nα1 + C1 · nα2

indeed become linear combinations of functions
nα1 and nα1 · ln(n).

• The main ideas behind this analysis of growth
models first appeared in [Nguyen and Kreinovich,
1997], where we analyzed possible scale-invariant
growth models.

7 Which of the 2-Parametric Scale-Invariant
Growth Models Is the Closest to the Exponen-
tial Growth Model?

It is reasonable to select a growth model which is the
closest to the exponential one. In the previous section,
we described all possible 2-parametric scale-invariant
growth models. Which of these models should we
choose?
In the first approximation, tumor growth is described

by the exponential growth model. It is therefore rea-
sonable, as the next approximation, to select a model
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which is – in some reasonable sense – the closest to the
exponential growth model.

How to describe closeness. As we have shown, each
2-parametric scale-invariant family F has either the
form

F (α1, α2)
def
= {C1 · nα1 + C2 · nα2}C1,C2

for some α1 and α2 or the form

{C1 · nα1 + C2 · nα1 · ln(n)}C1,C2

that corresponds to the limit case when α2 → α1, i.e.,
when α2 is “infinitely close” to α1. We will denote the
limit-type family by F (α1, α1 + ε), where ε denoted a
number that tends to 0.
From this viewpoint, each scale-invariant family can

be characterized by a pair α = (α1, α2) of numbers or
number-like expressions:

• in the non-degenerate case, when the eigenvalues
α1 and α2 are different, we can simply take

α = (α1, α2);

• in the degenerate case, when we have the same
eigenvalue α1, we take α = (α1, α1 + ε).

Thus, as a measure of closeness between the two fam-
ilies F (α) and F (α′), it is reasonable to take the dis-
tance between the corresponding pairs α and α′:

f(F (α), F (α′)) = D(α, α′),

for some reasonable distance function D(α, α′).
As D(α, α′), for numerical pairs, we can take, e.g.,

the Euclidean distance. For pairs including the in-
finitesimal distance ε, the Euclidean formula leads to
the distance in terms of ε: e.g.,

D((α1, α1), (α1, α1 + ε)) = ε

is an infinitesimal distance (still different from 0).

In this sense, the Gompertzian model is indeed the
closest. The exponential model can be viewed as a par-
ticular case of the general 2-parametric family corre-
sponding to α1 = α2 = 1, i.e., as a family F (1, 1).
One can easily see that the closest truly 2-parametric

scale-invariant model is the one that corresponds to the
infinitesimally close pair (1, 1 + ε), i.e., to the family
F (1, 1 + ε) that consists of linear combinations of the
functions n1 = n and n1 · ln(n) = n · ln(n), i.e., of
functions of the type f(n) = a · n− b · n · ln(n). This
is exactly the Gompertz growth function.

So, the symmetry-based approach indeed explains the
ubiquity of Gompertzian growth functions.

Gomperzian model beyond tumors. Gompertzian
model also provides a reasonable description of growth
in different application areas ranging:

• from bacterial growth in biology (see, e.g., [Zweit-
enberg, 1990])

• to mobile network growth (see, e.g., [Islam,
Fiebig, and Meade, 2002])

• to growth of financial markets (see, e.g., [Caravelli
et al., 2016]).

The fact that the Gompertzian models provides a good
description of growth in many application areas led to
general physical explanations for this model; see, e.g.,
[Yamano, 2009]. However, this explanation is some-
what too specific and too complex to be a convincing
explanation for this general phenomenon. We believe
that our symmetry-based explanation is more adequate
– and we hope that it will lead to a better understanding
of the Gompertzian growth phenomenon.
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