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Abstract
A problem that affects many engineering applications

is the need for vibration isolation to reduce the level
of vibration transmitted from a source to a receiver. A
lower natural frequency would benefit the isolation per-
formance of a vibration isolator because it would pro-
vide a wider frequency isolation region. However, if
a linear mount is used, this approach is limited by the
static displacement that derives from a soft spring. One
possible solution is to employ nonlinear mounts with
high-static-low-dynamic-stiffness (HSLDS) whose dy-
namics can often be described by the Duffing equa-
tion. Although the response of the Duffing oscillator
to a harmonic force applied to the mass has been ex-
tensively studied, simple analytical expressions for the
transmissibility of these systems seems not to be avail-
able yet. In this paper a simple expression for the max-
imum transmissibility is proposed. Furthermore, the
transmissibility of an HSLDS isolator is compared with
that of an equivalent linear model to show the improved
performance.

1 Introduction
The use of passive isolators is ubiquitous in engineer-

ing systems (Hartog, 1985; Rivin, 2001). In the sim-
plest case when the isolator is linear, a low natural
frequency, which is desirable, can only be achieved
by having a large static deflection, which is undesir-
able. This disadvantage can be overcome by employ-
ing isolation mounts with a nonlinear characteristic.
For examples, Platus (Platus, 1999) and Plaut (Plaut
et al., 2005) exploited the buckling of structures under
axial load in a specific configuration to achieve low dy-
namic stiffness without compromising on the static dis-
placement. Others have achieved the same by connect-

ing linear springs with positive stiffness in parallel with
mechanical elements of negative stiffness (Alabuzhev
et al., 1989; Carrellaet al., 2007) or using magnets
as a source of negative stiffness (Carrellaet al., 2008).
When sets of elements with positive and negative stiff-
ness act in parallel it is possible to achieve High-Static-
Low-Dynamic-Stiffness (HSLDS). More specifically,
this type of systems can be optimally tuned so that at
the static equilibrium position only the positive stiff-
ness mechanism exerts a restoring force (and there-
fore it has the same static displacement as a standard
or equivalent linear system). However, for oscilla-
tions about the static equilibrium position, the effect
of the negative stiffness components is to reduce the
dynamic stiffness which implies a lower natural fre-
quency than the linear model and, as a consequence,
a greater frequency range over which there is vibra-
tion isolation (Rivin, 2001). Most generally, the load-
deflection curve of a HSLDS mount can be described
by a polynomial function of n-th degree. However, if it
is possible to reduce the polynomial to a symmetric cu-
bic, a relatively easy analytical formulation can be ob-
tained. In most cases, this can be done with a good de-
gree of approximation and allows to write the equation
of motion in the form of the Duffing equation which has
been extensively studied (Nayfeh and Mook, 1995; Jor-
dan and Smith, 1999). In the literature analysis of the
Duffing oscillator is usually confined to the study of
the system response to a harmonic force applied to the
mass. Only few papers investigate the transmissibility
of this type of system and the reference work on the
subject is (Ravindra and Mallik, 1994). The analysis
presented therein does not offer analytical expressions
for the characterisation of the transmissibility. Peleg
(Peleg, 1979) has given a more analytical description
of the transmissibility of a nonlinear system with cu-



bic restoring force but also lacks a final explicit expres-
sion. In this article, an analytical formulation of the
isolation performance of a nonlinear isolation mounts
in terms of the system transmissibility is proposed and
a simple, explicit formula for the peak transmissibility
of a vibration isolator with cubic nonlinearity is pro-
vided. Furthermore, a numerical comparison between
the transmissibilities of the HSLDS and its equivalent
linear mount shows the advantages offered by the non-
linear mount.

2 Response to a harmonic force
Fig. 1 is a schematic representation of a single-degree-

of-freedom system with an HSLDS mount. A massm
is suspended on a dashpotc and a nonlinear mount with
HSLDS characteristic,kHSLDS. When an element with
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Figure 1. Single-degree-of-freedom system with an HSLDS mount

with viscous damping: a massm is suspended on a dashpotc in

parallel with a nonlinear spring with HSLDSkHSLDS. The excita-

tion force acting on the mass isfe = Fe cosω t. ft is the force

transmitted to the base through the spring and the dashpot

constant positive stiffness is connected in parallel with
a mechanism with nonlinear negative stiffness, e.g. the
systems considered in (Carrellaet al., 2007; Carrellaet
al., 2008), the restoring force can be expressed approx-
imately as

fkHSLDS = k1 x + k3 x3 (1)

wherek1 andk3 are the coefficients of the linear and
nonlinear terms of the cubic restoring force respec-
tively, and the sign ofk3 denotes the stiffness be-
haviour, hardening (+) or softening (-). It is impor-
tant to recall that if the elements with negative stiff-
ness (which confer the desired HSLDS characteristic)
are removed then the isolator becomes a standard lin-
ear model, i.e.k3 = 0, with constant stiffness, say,
kl > k1. If the mass of the system shown in Fig. 1
is excited by a harmonic forcefe = Fe cos(ω t) the
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Figure 2. Frequency response function of the Duffing oscillator de-

scribed by Eqn.(3). The sign of the cubic coefficient defines asoft-

ening (-) or hardening (+) behaviour. Whenα = 0 the system

becomes linear

equation of motion of the HSLDS model is

mẍ + cẋ + k1 x + k3 x3 = Fe cos(ω t) (2)

It is helpful to nondimensionalise Eqn.(2), so that

x̂′′ + 2 ζ x̂′ + x̂ + α x̂3 = cos(Ω τ) (3)

where:

ζ = c
2mωn

ω2
n = k1

m
α =

k3 x2

0

k1

Ω = ω
ωn

τ = ωn t

x̂′′ = ẍ
ω2

n
x0

x̂′ = ẋ
ωn x0

x̂ = x/x0

with the symbol′ denoting differentiation with respect
to the nondimensional timeτ and

x0 =
Fe

k1

∣

∣

∣

∣

∣

k3=0, ω=0

(4)

It is noteworthy thatωn is not the natural frequency
of the HSLDS system but is a characteristic frequency
which is the natural frequency of the linearised HSLDS
isolator, i.e. when the amplitude of oscillations is small
enough to makeα x̂2 ≪ 1. Note also thatα is a factor
related to the type and degree of nonlinearity. Besides,
α also takes into account the magnitude of the applied
force because of its dependency on the displacement
x0. The role played by the sign ofα is qualitatively
shown in Fig. 2. Whenα is negative the FRF curve
bends to the left, marking a softening behaviour. When
α = 0 the system becomes linear and the FRF assumes
its standard shape with a peak atΩ = 1 (when damping
is small). Finally, asα is made positive, the plot leans
over to the right because of its hardening characteristic.

It is possible to obtain an approximate analytical
solution to Eqn.(3) with different methods (Nayfeh



and Mook, 1995). Amongst them, here the preferred
method is the Harmonic Balance (HB) to a first order
expansion, i.e. it is assumed that the response is har-
monic at the excitation frequency (Hamdan and Bur-
ton, 1993; Friswell and Penny, 1994; Worden, 1996)

x̂ = X̂ cos(Ω τ + ϕ) (5)

whereX̂ is the amplitude andϕ the phase of the re-
sponse. The application of the HB leads to the fre-
quency equation that relates the amplitude and fre-
quency of the response and is given by (Magnus, 1965)

Ω2
1 =

(

1 +
3

4
α X̂2 − 2 ζ2

)

+

− 1

X̂

√

1 − 4 ζ2 X̂2

(
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4
α X̂2
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From equations (6a,b) it is possible to derive an ex-
pressions for the maximum amplitude of the response,
i.e. when the known phenomenon of the jump-down
takes place and for the frequency at which this occurs
(Magnus, 1965; Carrella, 2008), both depicted in Fig.3.
The maximum amplitude is
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Figure 3. Plot of the frequency response of a hardening Duffing os-

cillator: as the frequency is increased the amplitude increases follow-

ing the upper or resonant curve. At the frequencyΩd, marked with

the letter D, it suddenly drops to the lower or non-resonant branch.

Similarly, decreasing the frequency, the response followsthe non-

resonant branch until the frequencyΩu, marked with the letter U. A

further decrease in frequency causes the response to jump upto the

resonant branch.

X̂max ≈
√

2

3 α

[
√

1 +
3 α

4 ζ2
− 1

]

(7)

and the jump-down frequency at which this occurs is

Ωd =

√

3

4
α X̂2

max + (1 − 2 ζ2) (8)

By substituting Eqn.(7) into (8), and assuming thatζ ≪
1/

√
2 (ζ ≪ 0.7) a simple expression forΩd can be

found, which is

Ωd ≈ 1√
2

√

1 +

√

1 +
3 α

4 ζ2
(9)

From Eqn.(9) it can be seen that, whenα is negative
(softening system), forΩd to be real the following cri-
teria has to hold

α = αmax ≤ 4

3
ζ2 (10)

Eqn.(10) expresses the fact that, when a softening sys-
tem with a given damping ratio has too large a nonlin-
ear coefficient, i.e.|α| > |α|max, the two curvesΩ1

andΩ2 never meet and the jump-down does not occur,
(Hamdan and Burton, 1993). As it will be shown in the
next section, Eqns.(7) and (9) will enable to charac-
terise with simple analytical expressions the transmis-
sibility of the nonlinear system.

3 Transmissibility of the HSDLS isolator
The quantity that is often used to evaluate the per-

formance of an isolation mount is the absolute trans-
missibility which is non-dimensional and frequency-
dependent. If the system is excited by a harmonic force
applied to the mass the absolute transmissibility is the
ratio between the magnitude of the transmitted force
to a rigid foundation and the magnitude of the excita-
tion force, in steady-state vibration and at a given ex-
citation frequency. With reference to Fig. 1, the har-
monic excitation force (source) acting on the mass is
fe = Fe cos(ω t). The force transmitted to the base
(receiver) isft = Ft cos(ω t + ϕt). By definition the
absolute transmissibility is

|Ta| =
Ft

Fe

(11)

Expressing the equation of motion in nondimensional
form as in Eqn.(3), the nondimensional transmitted
force – through the spring and the dashpot – is

f̂t = 2 ζ x̂′ + x̂ + α x̂3 (12)



wheref̂t = (c x + k1 x + k3 x3)/(k1 x0). Being inter-
ested in the response at the excitation frequency only,
as expressed by Eqn.(5), the transmitted force can be
written as

f̂t = −2 ζ Ω X̂ sin θt +

(

X̂ +
3

4
α X̂3

)

cos θt

= A sin θt + B cos θt

(13)

whereθt = cos(Ω τ + ϕt). Thus, the magnitude of the
transmitted force is, (Ravindra and Mallik, 1994)

F̂t =
√

A2 + B2 (14)

On the other hand, from Eqn.(2), the non-dimensional
magnitude of the applied force iŝFe = 1. It follows
that the magnitude of the force transmissibility is

|Ta| =
F̂t

F̂e

= X̂

√

(

1 +
3

4
α X̂2

)2

+ 4 ζ2 Ω2 (15)

The transmissibility of a hardening system withζ =
0.01 and α = 10−4 is plotted in Fig.4. The trans-
missibility of a system with softening nonlinearity
with ζ = 0.01 and α = −10−4 is instead shown
in Fig.5. Note that the curves have been obtained
by substituting Eqns.(6) into Eqn.(15) and lettinĝX
vary between 0 and̂Xmax. The dashed part of the
curve denotes the unstable solution (Hamdan and Bur-
ton, 1993; Rand, 2005).

3.1 Peak transmissibility
It can be argued that there are two indices to mea-

sure the effectiveness of a vibration isolator: one is
the bandwidth of the isolation region, which is the
frequency region within which the transmitted force
becomes smaller than the excitation force, that is when
|Ta| < 11; the other is the peak-transmissibility, which
is the maximum amplitude of the transmitted force for
a given amplitude of the input force.

In order to find an expression for the maximum trans-
missibility, the maximum amplitude response,X̂max,
and the frequency at which this occurs, i.e. the jump-
down frequencyΩd, given by Eqns.(7) and (9) respec-
tively, are substituted into Eqn.(15). The resulting ex-
pression, valid for small damping,ζ ≪ 1, is

|Ta|max ≈ 1

2
√

2 ζ

√

√

√

√1 +

√

1 +
3 |α|
4 ζ2

(16)

1For a linear system this begins at
√

2 time the natural frequency
(Rivin, 2001; Harris, 1995)

Recall that for a linear system the peak-transmissibility
is given by, (Rivin, 2001; Harris, 1995)

|Ta|max(linear) ≈
1

2 ζ
(17)

It should also be noted that the expression for the peak
transmissibility of a nonlinear isolator with symmetric
cubic restoring force given by Eqn.(16), reduces to that
of a linear system Eqn.(17) whenα = 0. In Figures
4 and 5 the transmissibility of hardening and softening
HSLDS isolators withζ = 0.01 is plotted and the max-
imum transmissibility calculated with Eqn.(16) shown.
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Figure 4. Absolute Transmissibility of an isolator with hardening

HSLDS characteristic (α = 10−4) andζ = 0.01. The maximum

transmissibility calculated with Eqn.(16) is also shown
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Figure 5. Absolute Transmissibility of an isolator with softening

HSLDS characteristic (α = −10−4) andζ = 0.01. The maxi-

mum transmissibility calculated with Eqn.(16) is also shown



4 Comparison between the transmissibility of an
HSLDS mechanism and an equivalent linear iso-
lator

In order to assess the vibration isolation performance
of an HSLDS mount, its transmissibility is now com-
pared with that of an equivalent linear model. As said,
one way of obtaining the HSLDS characteristic is to
connect in parallel elements with constant positive with
other with nonlinear negative stiffness. In this case the
equivalent linear model is defined as the system de-
prived of the element with negative stiffness. If op-
timally tuned, that is if in the static equilibrium posi-
tion the elements with negative stiffness are ineffective,
the two systems have the same static stiffness. How-
ever, the insertion of elements with negative stiffness
alters also the linear coefficient of the restoring force,
Eqn.(1). Without loss of generality, it can be stated that

k1 = β2 kl (18)

wherekl is the stiffness of the equivalent linear iso-
lator, and0 < β2 < 1 depends on the type of neg-
ative stiffness mechanism. If there were no mecha-
nism with negative stiffness thenβ = 1 and, of course,
k1 = kl andk3 = 0. This observation is important
when comparing the transmissibility curves of a linear
and a HSLDS isolator. In fact, the dynamic properties
of the HSLDS isolation mount (e.g. jump frequency,
maximum transmissibility) have been derived in terms
of the nondimensional parameters of Eqn.(3). A key
parameter in the nondimensionalisation is the charac-
teristic frequencyω2

n = k1/m which is clearly differ-
ent for a linear and a HSLDS system. In particular, for
a linear system

ωl =

√

kl

m
(19)

whilst for an HSLDS mount is

ωn =

√

β2 kl

m
= β ωl (20)

As a consequence, the value of the damping ratio also
changes between a linear and a HSLDS isolator. The
damping ratio of a linear system is given by

ζl =
c

2 m ωl

(21)

whereas for an HSLDS model is

ζ =
c

2 m ωn

=
ζl

β
(22)

Eqns.(20) and (22) can be seen as ‘scaling laws’,
by means of which the transmissibility curves of the

HSLDS and linear isolator models can be plotted on
the same graph.

For a linear system, the transmissibility is, (Harris,
1995)

|Ta|(linear) =

√

1 + 4 ζ2
l Ω2

l

(1 − Ω2
l )

2
+ 4 ζ2

l Ω2
l

(23)

where the nondimensional frequency ratio isΩl =
ω/ωl.
On the other hand, the transmissibility of the HSLDS
mount is given by Eqn.(15) whereΩ = ω/ωn or

Ωl = Ω β (24)

For the sake of consistency, when plotting the transmis-
sibility of a HSLDS and a linear isolator on the same
graph, the values on the frequency axis have to com-
ply with Eqn.(24). To appreciate the benefit offered by
the HSLDS isolator, the transmissibility of the linear
and nonlinear isolator have been plotted on a decibel
scale in Fig. 6. In the example shown the linear model
hasζl = 0.005 and for the hardening HSLDS isolator
β = 0.5 andα = 10−4. Because the frequency ratio on
the x-axis isΩl = ω/ωl, the value ofΩ used to com-
pute the transmissibility of the HSLDS system, given
by Eqn.(15), had to be scaled according to Eqn.(24).
As expected, the transmissibility of the linear system
reaches its peak value of1/2ζ = 40 dB atΩl = 1. The
wider range of the frequency isolation region and the
reduction of the peak transmissibility are clearly vis-
ible. From the figure it can be seen that the HSLDS
mount does indeed offer better isolation performance
than its equivalent linear model. The peak value is
smaller and the isolation region is extended. It is im-
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Figure 6. Comparison between the absolute transmissibility curves

of a linear (-.) and a hardening HSLDS (–) mount. For the linear

systemζl = 0.005 and for the HSLDS mountζ = 0.01 (β =
0.5)

portant to note that the ‘bend’ of the transmissibility
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curve depends on the coefficient of the nonlinear term
α which, in turn, depends on the amplitude of the ap-
plied force and the coefficient of nonlinearity. If a sys-
tem with a hardening HSLDS mount is subject to large
amplitudes of excitation or has a strong nonlinearity,
its transmissibility curve might intersect and even go
beyond that of the linear mount2. In order to set a cri-
terion for comparing the isolation performance, it can
be argued that the benefits of a HSLDS mount cease
when the jump-down frequency coincides with the nat-
ural frequency of its equivalent linear model. The lim-
iting value ofα can be thus found by imposing that

β Ωd = 1 (25)

If it is assumed thatζ ≪ 1, substituting Eqn.(9) in
Eqn.(25) and solving forα yields

αlim =
16

3

ζ2 (1 − β2)

β4
(26)

Fig. 7 shows the transmissibility curves of an HSLDS
with β = 0.5 andζ = 0.01 whenα = αlim = 0.0065
andα = 2 αlim = 0.013. It can be seen that whenα =
αlim the jump-down frequency is equal to the natural
frequency. The figure also shows that whenα = αlim

the linear and HSLDS isolator mounts have the same
peak-transmissibility.

5 Conclusions
Nonlinear vibration isolators with high-static-low-

dynamic-stiffness offer a solution to the problem of
having to choose between a low natural frequency, de-
sired for a wider frequency isolation bandwidth, and
the consequent high static displacement that would re-
sult from using a linear softer mount. The dynamics

2For a softening system this issue does not arise.

of a mass suspended on a HSLDS spring can often
be described by the Duffing equation. In this paper,
the approximate solution to the Duffing equation has
been used to determine simple analytical expressions
for the maximum amplitude of the response and the
jump-down frequency. These expressions have been
used to derive an analytical expression for the trans-
missibility of the system which compares favourably
against the equivalent linear isolator.
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