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Abstract— Power electronic dc-dc converters are known to Il. MATHEMATICAL MODEL OF THE CONVERTER
exhibit undesirable subharmonic and chaotic behaviour begnd
certain parameter ranges. In this paper we propose methods
of controlling the bifurcation to extend the range of desirdble
period-1 operation, by taking advantage of the switching nture
of such circuits. At the switching events, the evolution of prtur-
bation is given by the so-called "saltation matrix” and hene it is
possible to influence the Floquet exponents by manipulatinthis

matrix. In physical terms this implies controlling the tria ngular = p(t) - Hha :
wave used in the pulse-width modulator, or using a control Igic + Mol QL‘
that uses voltage as well as current feedback. We demonsteat . — 4
the resulting control of the bifurcation both by simulation and V/ul/ v Vier |

Vi T Vramp

experiments.

Index Terms— Bifurcation control, dc-dc converters, saltation
matrix, monodromy matrix.

Fig. 1. \oltage-mode controlled buck converter.

We consider a voltage-mode controlled buck converter as
. INTRODUCTION shown in Fig.1. It consists of a controlled swit¢h (MOS-

Power electronic circuits are variable topology systents affET), an uncontrolled switchD (diode), an inductorL, a
give rise to a great variety of nonlinear behaviors, e.gioge capacitorC, and a load resistanc. The switching of the
doubling route to chaos [1], border collision bifurcatiai,] MOSFET is controlled by feedback logic known as pulse
grazing phenomena [2] and quasi_periodicity [3]’ [4] Besa width modulation of type-2 (PWM'Z) This is achieved by
of these apparently unpredictable and often undesiratmié- osobtaining a control voltage..., as a linear combination of
latory behaviors, their control has become a topic of irserethe output capacitor voltage, and a reference signat. in
in the recent past [5]. The ability to avoid chaos and oth&pe form
nonlinear behaviors is almost a basic feature of all exgstin (1)
practical control strategies. Various control technighese ) ) N _
been proposed by means of feedback control actions ainté@erec is the gain of the error amplifier arid is the factor
at changing the system dynamics over the entire region @ffreduction of the output voltage. An externally gene_rated
interest [6]-[8]. Other non-feedback control methods [@yd Saw-tooth voltageViam, = Vi + (Vu — Vi) F(¢/T), of time
also been proposed, which are highly suitable for supprgssPeriod 7" and upper and lower threshold voltagés and V;
chaos and bifurcation in periodically driven systems [a]]] respectively, is used to.determlne the switching instdrtse

In this paper, we consider a new non-feedback parametfi¢z) denotes the fractional part of : {F(z) = = mod 1.
perturbation for controlling bifurcation in a PWM voltagen PWM-2, the controlled voltage.., is then compared with
mode controlled buck converter based on suitably changiff Periodic saw-tooth wave;.np, to generate the switching
the slope of the switching manifold. In general, parametriignalp(t) € [1,0] described by
perturbation can make a system chaotic, but applying it
at appropriate frequencies and magnitudes can induce the
system to stay in periodic regimes [11]. We also show the
effect of perturbed signal on system’s stability usinggfibv
solution [12].

Ucon = O‘(V;ef - ’U/kl)a

If V;amp < Ucon;
If ‘/ramp > Ucon}

p(t) =1,
p(t) = 0.

The inductor current increases while switShs oni.e. p(t) =
1 and falls while switchS is off i.e. p(t) = 0. The buck
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converter can be regarded as a second-order nonautonomous
continuous dynamical system, which can be described by a
state equation of the form

x = f(x,t) (2)



wherex = [i v]T is the state vector anfl(x, t) is the vector
field. Under normal operation, the system is nonautonomous
because the vector fiefdx, ¢) is a function of time. Moreover,
the system is periodic with peridl sincef(x,t) = f(x,t+7)

-
for anyt. When the system assumes a specific circuit topology, f f‘/v

the corresponding vector field is linear and continuous. How f(x, ) X(ts)

ever, the vector field of the system becomes discontinuous at

the switching instants where the circuit topology is chatige Ve A
Thus the overall vector field is discontinuous and the syseem x(0)

a piecewise-smooth dynamical system. Specifically, théovec °

field f(x,t) can be defined as

% o ‘/in/L_IQ/L§ O‘(Vrcf_xQ/kl) > ‘/rampa (3)
dt _xQ/L; O‘(‘/rcf_xQ/kl) < ‘/ramp-

Fig. 2. Switching surface.

d Assuming a periodic orbit starts at= ¢, in subsystem
- x1/C—x2/RC. (4) V_, intersect the switching surface at= tx (or ¢t = dT),

dt L , goes over to subsysteiri. and return to initial condition at
The switching event occurs whenever the vector field of eagh_ to+T. Before the intersection with the switching surface

circuit topology reaches the border functib(x, ) defined by v, he system is smooth and therefore the fundamental matrix

(Vu—Vi)t before and after the intersection can be defined as [12]
h(x,t)=a(Viet —x2/k1) — ~—F———Vi=0;

b ly the evolution of g d by (3) and (4) Wi(ti,to,x0) = e vy € (to, tx),
subsequently the evolution of is governed by (3) and (4). Wt 1 = pAslbats). gy b T
Therefore, the two dimensional state-space can be divited i (F2, s, xx) ¢ P Wiz € (0, T).
three parts: where 0 1L

X_UEUX+:]R2 (5) As = 1/0 —I/RC 3
where The state transition matri¥ (¢, + T, to, x(to)) calculated
Vo:x. = {xeR2:h(xt) <0}, over a complete cycle (thilonodromy Matrix) is defined as
Vi:xy = {xeR? :h(x,t) >0} W(T +to, to, x(to)) =W (T +1o, tx, x5)SW (ts, Lo, X0) (8)
Y = {xeR?:h(xt) =0} The Saltation Matrix S defines the solution on the hyper-
Hence, (5) can be written as surface at = tx and is given by
f_ (X, t); xeV_ S=1+ [hmt"tﬂ+ fJF (X’ t) - hmt"t%; f_ (X’ t)] nT (9)
x=f(x,t) = ¢ {f-(x,1),fr(x,t)}; xeD (6) T limy e £ (x,8) + 57 (%, )i
fi(x,t); xeVy wherety_ andty, denote the time instant just before and

In the sense of Filippov’s convex method, (3) and (4) cadfter the switching event. The time derivative of the switigh
be written as an upper semi-continuof(s, ¢) and (6) has hyper-surface is

a solution if the vector fields enter the hyper-surface Oh(x,t) 0 Vi+(Vu-V)t]  Vu—V
ins.tar;]t_aner(])usly. Sir;ce therehis on!y (;nezdiicontinuityhr?t"tT—a Viet —2/k1— oT =T AT
switchin er-surface as shown in Fig.2 the convex hall js =~ . :
d\(levlline:j gs ypersu wn in g Vex ubstituting (6) into (9), the saltation mati$becomes
o _ | @{(Vin —22)/L, —x2/L} _ | ! wmymo= (tVi)n/chRC—(% —Vi)/aT
co{f(x,t),ﬂ(x,t)}—[ 21/C — 3/ RC S = 0 1(t2)/kiC—a2 >:11 ]

= { {aVin/L —2/L} } , Vg € [1,0] So, if S is known it is possible to find out the eigenvalues of

21/C — z2/RC monodromy matrisW (o +17, to, x(to)). For stable period-one

The normal to switching hyper-surfaceis fixed point, the absolute magnitude of the eigenvalues mast b

less than 1.
Oh(x,t)  Oh(x,t

0y Oz, I1l. STABILITY ANALYSIS
Therefore, the projections df. andf, on X are given by Due to the transcendental form of the equation in PWM-

2 voltage controlled buck converters [2], it impossible to
T = — T = — . . . . . ! . .
nHf o=/l Ct o/ RC 0y =21/l Ct 22 [l RO ot the exact switching instant within the periodicle.
SincenTf_.nTf, > 0, the vector fields transversely intersecThe state vector at the switching instanttat= ¢ty can be
the switching manifold. obtained semi-analytically as

T
n:Vh(x,t):[ )} =0 —1/k])" (7)

T
1At switching points, the state vector changes its oriemtatithe vector _ A (T—T)
field, being the time derivative of the state vector, is digitmous. x(dT)—CI)l (dT)x(O) + 0 € Bodr (10)



where®, (dT') = e4+97, B, = [Viy/L 0]7 and the duty ratio one of the eigenvalues goes through the negative real adis an
d =ten/T = (T —tx)/T. For normal period-1 operation, thelater it makes the system unstable through a smooth period
value of the state vector at the next clock instaif') = 2(0) doubling bifurcation.

can be easily evaluated as:

x(0)=[I — eAST]q eAS(deT)ASfl[I _ eASTlBS} (11) IV. BIFURCATION CONTROL

It has been shown that the previous analysis gives similar

which satisfy the hyper-surface results as the Jacobian of the Poincaré map and is much
Vi+ (V= WV)d \ easier to be used. But more interestingly this method otiers
Viet = —————— =0 1]e"=""x(0) (12)  further insight into the converter’s operation. It can bersthat

(e

The solution gives the steady state period-one duty ratio. {Fe stability depends on the 3 transition matrices and hence

analyse the effect of parametric perturbation on the s".mbilI can b.e claimed that by approprla_ltely c.hanglng thgm we
of the buck converter (Fig.1), we use the following paramet an avoid smooth and nonsmooth bifurcation by keeping the

values:L = 20mif, R = 58 O — 4TuF, o = 10,1 = 1,08 B0 o oo e et we canto!
Vi=0.4V,V,=5.8V,T = 350uscc, Vier=11.3V, andvi, istaken 2 522 €1 B0 L SHE IS Y o Chot
as the bifurcation parameter. Fg¢, = 30.4 V 2, numerically ast-scale nstabilities. fo do that we can either am)éﬁ
we obtaind — 0.3646, x(0) — [0.1293 11.0608]7, and or we can c;hange thg slope of th(_a swnchlr_]g mgnn‘old. One
<(dT) = [0.2529 11.0631]T. The saltation matrix and way to achieve that is to add a time varying signal to the

. ) demanded voltage. This can be a sinusoidal sigrth w,t
monodromy matrix are calculated as: . ; .
with amplitudea and frequencys. However, depending on

S_ 1 —0.5306 W(T, 0,x(0)) = —0.4294 —0.5052| the relationship between the switching frequencynd w;,
0 1 ’ T 0.5167 —1.4405 different window lengths of intermittent subharmonics may

The eigenvalues of the monodromy matrix ar6.9349 + appear [11]. In the following §ubsections alternative m_dth _
0.0735; implying that at the above parameter values tHd®€ prop(_)sed that are easy_tmmp_lement_and guaranteatgtabil
system is stable. This is in agreement with both numeric@Yer & wide range of the bifurcation variable.

(Fig-3a) and experimental observations (Fig.4a).
A. Ramp dlope change

5
/ ! /Hﬂ’%l To overcome these difficulties we choose a different ap-
® \ o / proach to influence the saltation matrix. This is based on the
= x
8 - < Iin-30.4 \ slope of the ramp voltage, = (V,, — V})/T as the perturbed
z g 1 , _ 0) parameter and is achieved by changing either the upper tip of
o Gk \'0'937 ramp voltageV,,, or lower tip of ramp signaV;, where the
strength of the perturbed signal amplitud® is decided by
0 A the ripple magnitude of any state vector. Hence, changiag th
@ . npuvo * ) 18 SaAds  LF time derivative of the switchi face t
a) nput Voltage (V) (b) Real Axis ime derivative of the switching surface to
Fig. 3. (a) Bifurcation diagram of duty cycle and (b) eigdoes loci for (?h(x, t) _ _(Vu -Vi+ 5V) (13)
Vin € (29,32) V for 6V = 0OV. ot oT

To study the effect of increased amplitude perturbatidh
we plot the calculated Floquet multipliers of the monodromy
Vy =5.8V V| =0.4V matrix for Vi, € (29 — 32)V anddV = 0.4V as shown in
Fig.5a. Throughout the voltage variation, the absoluteeralf

the eigenvalues, » = 0.9378 < 1. Based on these results we
//| can propose a new control scheme that will optimally choose
m

|

V, =5.8V

the strength of/, to keep the magnitude of the eigenvalues
exactly the same as that for the stable period-1 orbit obthin
for a nominal value of/;,. This is obtained by solving the the
equation:|eig(W(T,0,x(0))| — 0.9378 = 0. The results of

Fig. 4. Experimental results showing (a) normal period-grafion atVi, ~  this algorithm for various values df;, are shown in Fig.5b.

33V, (b) & period 2 operation foV, ~ 41.6 V. To further validate these results, experimental tests have

been carried out as shown in Fig.6. Results presented ifl-ig.

To confirm the result obtained by F_ilippov_solution methOd%‘now through the experimentally obtained bifurcation chag
we czélculated tth_e Ffloq‘;Jet muI_tlplle;rs (eg;gen\\//a:uegzofv tl}ﬁat is possible to push the first period doubling to 42V by
monodromy matrix) forVi, ranging from 0 " adding a small perturbatiofl” = 0.7V. To further enhance

The locus of the eigenvalues shown in Fig.3b. It shows thﬁte stable area of the system the perturbation is increased t

eigenvalues first become real at parameter value 30.4 V, thﬁP = 1.2V and it is clear that the system remains stable for
2puring experimental results we used 33V, this discreparmydie to th.e entire opera_ting regign: The reSUItS_ are in t(?tal agesem
mismatches between the ideal and real values of variousnesees with the theoretical prediction as explained earlier.
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Fig. 6. Experimental bifurcation diagram for (8 = 0V and (b)6V =
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it is observed that system again becomes stable as shown in

Fig.9b.
B. Manifold dope change

As the slope of the switching manifold is expressed by its s k2=0.814

normal vector it is possible to stabilise the system by agldin /)
current component to the feedback signal. This will foroe th 3
V,

first coordinate ofn to be nonzero and hence we change the [~ con| T L
slope ofh. In this case the modified switching hyper-surface /W\f |/ /\
can be expressed as i Vip =41V i vV Vined 1y

Time (msec) (a) Time (msec) (b)

h(X, t) = ‘/;ef+xl/k2_x2/kl_V;"amp/azoa « 7& 0 (14)

Fig. 9. Experimental observations showing the currentbfaek for enhanc-

The normal to switching hyper-surfaceis ing the stability region: The control voltage and the induaturrent for (a)
T the birth of period-2 orbit a¥;,,=41V, k2 = 0.0743 and (a) stable period-1
n=Vh(x,t)=[1/kas —1/ki] (15) orbit atks = 0.314.

Hence in addition to voltage feedbadk (= 1), the current
feedback loop changes the system dynamics. The system V. CONCLUSION
becomes stable for a larger parameter range for appropriat&sing Filippov's approach, we have analysed the stability
feedback gain. To ensure that, it is necessary to calcutate dbf periodic limit cycles of the voltage mode controlled buck
eigenvalues for a wide range df, and to prove that the converter. The method does not depend on the determination
period-1 orbit will remain stable. The representative psater of the Poincaré map, and hence is quite suitable for stybili
space forke = 0.1 is shown in Fig.8 keeping all otheranalysis of the vast majority of power electronic systems
parameters same as mentioned before. Through out the @oltagnose Poincaré map cannot be determined in closed form. In
rangeVi, € (29—32)V, the eigenvalues are complex conjugatéhis method the fundamental solution matrix over a complete
with absolute magnitudg\; »| = 0.9628 < 1. cycle is determined by using the state transition matrices

As it can be seen by the addition &f the bifurcation for the segments of the orbit lying in the individual matrix
pattern did not change but is delayed. This can be deducedauyoss the switching boundary. Based on the insight that thi
the fact that the eigenvalues follow a similar path as beformethod offered we are able to propose various strategies to
(Figs. 8 and 5a). This is very important because it undeslinavoid fast scale instabilities. The methods that were dgsly
the basic concept of the proposed method. That the systarmalysed proposed a small change at the upper value of the
is stabilised without greatly changing the overall dynanicsaw-tooth signal and an addition of a value to the feedback
i.e. the unstable period-1 becomes stable but does not ehaagntrol law that is proportional to the inductor current.tlBo
shape or location! To further justify this stateméntwas kept methods changed the saltation matrix and hence forced the
constant, and the input voltagg, was further increased. At system to become stable without changing the shape and
Vin = 41V (see Fig.9) the system again undergoes a smodtication of the orbit. Results have been analytically prove
period doubling. Now, ifks is increased to a value @314, and experimentally validated.
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