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Abstract
In the present paper it is proved that for synchronous

machine on elastic platform with asynchronous
actuation, the Sommerfeld effect is lacking for any
passing through resonance.
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1 Introduction
The present paper was stimulated by the work

[Blekhman, Indeitsev and Fradkov, 2007], where
in the neighborhood of resonance a ”hanging” of
oscillation frequency of machine on elastic platform
was observed. This ”hanging” is realized in the
form of random oscillations [Blekhman, Indeitsev and
Fradkov, 2007] and is often called a Sommerfeld effect
[Blekhman, Indeitsev and Fradkov, 2007; Blekhman,
1953; Blekhman, 1971; Blekhman, 2000; Fidlin, 2006;
Panovko, Gubanova, 1979; Kononenko, 1964].
In studying a Sommerfeld effect a conventional

mathematical model of machine was the following
equation [Blekhman, Indeitsev and Fradkov, 2007;
Blekhman, 1953; Blekhman, 1971; Blekhman, 2000;
Fidlin, 2006; Panovko, Gubanova, 1979; Kononenko,
1964]

Iϕ̈ = G(ϕ̇) (1.1)

Hereϕ(t) is a phase,̇ϕ(t) is instantaneous frequency
of rotation of motor armature,G(x) is so-called
”machine characteristic minus load”,I is a moment of
inertia of rotor.
In the present work it will be shown that under

natural assumptions for synchronous machine with
asynchronous actuation a Sommerfeld effect does not
occur for any passing of resonance. This fact is based
on a joint consideration of motions of elastic platform

and mathematical models of synchronous machine,
which are more complicated than (1.1). In this case
it turns out that synchronous motors have internal
stabilizing properties, preventing the occurrence of
Sommerfeld effect.

2 The boundedness of solutions of equations of
synchronous motor on elastic platform

Recall the classical equations of ”machine–elastic
platform” system in the case of model (1.1) [Blekhman,
Indeitsev and Fradkov, 2007; Blekhman, 1971;
Panovko, Gubanova, 1979] (Fig. 1):

Iϕ̈ = G(ϕ̇) + mεz̈ sin ϕ

Mz̈ + βż + cz = −mε(cosϕ)••
(2.1)

Figure 1.

Hereϕ is a phase of rotor rotation,z is a deviation of
platform from equilibrium,M is a mass of platform,m
is a mass of rotor,I is a moment of inertia of rotor,c
andβ are coefficients of elasticity and viscous friction,
respectively,ε is an eccentricity.
As a mathematical model of synchronous machine we



regard the following equation

Iθ̈ = −αθ̇ − sin θ.

Then for the system: ”synchronous motor – elastic
platform” we obtain in a similar way the equation

Iθ̈ = −αθ̇ − sin θ + mεz̈ sin(ωt + θ)

Mz̈ + βż + cz = −mε(cos(ωt + θ))••
(2.2)

Here ω is a frequency of current in stator winding,
θ is a phase difference of a rotating magnetic field
and a rotor [Leonov, 2006; Leonov, 2006],α is a
coefficient of damper windings. When the motor is
asynchronously actuated, we have the relationz(0) =
ż(0) = θ̇(0) = 0.
Having performed the change of variable

z = u + κ cos(θ + ωt), κ = −mε

M
,

from the second equation of system (2.2) we obtain

Mü + βu̇ + cu =
βmε

M
(cos(θ + ωt))•+

+
cmε

M
(cos(θ + ωt))

(2.3)

Relationz(0) = 0 implies the estimate

|u(0)| ≤ mε

M
(2.4)

and from the relations

ż(0) = θ̇(0) = 0

we have

|u̇(0)| ≤ |κω| =
mεω

M
(2.5)

From equation (2.3) and estimates (2.4), (2.5) we
obtain the following inequality

|u(t)| ≤ Qε, ∀ t ≥ 0

Here Q is a number, depending on the parameters
β, c, m, M, ω. This inequality implies the estimate

|z(t)| ≤ Dε, ∀ t ≥ 0 (2.6)

whereD is a number, depending on the parameters
β, c, m, M, ω.

Rewrite system (2.2) in the following way

Iθ̈ − mεz̈ sin(ωt + θ) = −αθ̇ − sin θ

Mz̈ − mεθ̈ sin(ωt + θ) = −βż − cz+

+ mε(cos(ωt + θ))(ω + θ̇)2.

(2.7)

System (2.7) is equivalent to the system

(
I − (mε)2

M
(sin(ωt + θ))2

)
θ̈ = −αθ̇−

− sin θ +
mε

M
(sin(ωt + θ))(−βż − cz+

+ mε(cos(ωt + θ))(ω + θ̇)2)

(2.8)

(
M − (mε)2

I
(sin(ωt + θ))2

)
z̈ = −βż−

− cz + mε((θ̇ + ω)2 cos(ωt + θ))+

+
mε

I
sin(ωt + θ)(−αθ̇ − sin θ)

(2.9)

Consider further the functionV = θ̇2 + ż2 and the
values ofθ̇ andż such that

V = R (2.10)

It is clear that (2.10) yields the inequalities

|θ̇| ≤
√

R (2.11)

|ż| ≤
√

R (2.12)

For a derivative of the functionV along trajectories of
system (2.8), (2.9) we obtain the relation

1

2
V̇ =

θ̇

I(1 − (mε)2

IM
sin(ωt + θ)2)

[−αθ̇ − sin θ+

+
mε

M
sin(ωt + θ)(−βż − cz+

+ mε(cos(ωt + θ))(ω + θ̇)2]+

+
ż

M(1 − (mε)2

IM
sin(ωt + θ)2)

[−βż − cz+

+ mε((θ̇ + ω)2 cos(ωt + θ)+

+
mε

I
sin(ωt + θ)(−αθ̇ − sin θ)]

From estimates (2.6), (2.11), (2.12), and relation
(2.10) it follows that for sufficiently largeR and small
ε the following estimate holds

V̇ ≤ −δR + EεR2



Hereδ andE are certain positive numbers, depending
on the parametersβ, c, m, M, ω, I, α.
It is obvious that for sufficiently smallε ∈

[0, ε0], ε0 = ε0(R) this estimate results in the
inequality

V̇ < 0

Then from relation (2.10) it follows that for the
considered solution of system (2.2) with the initial data
z(0) = 0, ż(0) = 0, θ̇(0) = 0 the inequality

ż(t)2 + θ̇(t)2 ≤ R, ∀ t ≥ 0

is satisfied for sufficiently largeR (with respect to
the parametersI, M, m, β, c, α, ω) and small ε ∈
[0, ε0(R)].
Thus, we have the following
Theorem 1.For sufficiently smallε > 0 the solution

θ(t), z(t) with the initial dataθ̇(0) = z(0) = ż(0) = 0
satisfies the estimate

|θ̇(t)| ≤ L, |z(t)| ≤ L,

|ż(t)| ≤ L, |z̈(t)| ≤ L, ∀ t ≥ 0

for sufficiently largeL.

3 Asymptotical estimates of solutions of
pendulum type equation for small nonstationary
disturbances

Consider now the equation

ẍ + aẋ + sin x = p(t) (3.1)

where a is a positive number,p(t) is a continuous
function, satisfying the following condition

|p(t)| ≤ ε, ∀ t ∈ R1 (3.2)

Here ε is a certain positive number, which, by
assumption, is small with respect toa and1: ε ≪ a,
ε ≪ 1.
Theorem 2.For any solution of equation (3.1) there

exists an integer numberk such that the inequality

lim
t→+∞

|x(t) + kπ| ≤ Cε (3.3)

is valid.
HereC satisfies the relations

C > 1 for a ≥ 2

C >
1 + P

1 − P
, P = exp

(
− aπ√

4 − a2

)
for a < 2

Proof. Consider a system, which is equivalent to
equation (3.1),

ẋ1 = x2

ẋ2 = −ax2 − sin x1 + p(t)
(3.4)

and the so-called systems of comparison [Leonov,
2006]

ẋ2 = x2

ẋ2 = −ax2 − sin x1 − ε
(3.5)

ẋ2 = x2

ẋ2 = −ax2 − sin x1 + ε
(3.6)

It is well known [12] that for sufficiently smallε all
solutions of systems (3.5) and (3.6) are bounded on the
time interval(0, +∞). Therefore [Leonov, 2006] there
exist the solutionsFk(σ) andGk(σ) of the equations

F ′F + aF + sin σ = −ε (3.7)

G′G + aG + sinσ = ε (3.8)

which satisfy the relations (Fig. 2)

Fk(σ1 + 2πk) = 0

Fk(σ) < 0, ∀σ > σ1 + 2kπ

Fk(σ) > 0, ∀σ < σ1 + 2kπ

lim
σ→∞

|Fk(σ)| = +∞

(3.9)

Gk(σ2 + 2kπ) = 0

Gk(σ) < 0, ∀σ > σ2 + 2kπ

Gk(σ) > 0, ∀σ < σ2 + 2kπ

lim
σ→∞

|Gk(σ)| = +∞

(3.10)

Hereσ1 andσ2 are zeros, of the functionssin σ + ε

andsin σ − ε, respectively, on the set[0, 2π), such that
cosσ1 < 0 andcosσ2 < 0.
Consider now the solutionx1(t), x2(t), of system

(3.4), which for the certaint satisfies the condition

x2(t) = Gk(x1(t)) > 0

Obviously,

ẋ2(t)

ẋ1(t)
=

−aGk(x1(t)) − sin x1(t) + p(t))

Gk(x1(t))
<



Figure 2.

<
−aGk(x1(t)) − sin x1(t) + ε

Gk(x1(t))
=

dGk(x)

dx

∣∣∣∣
x=x1(t)

Hence the curvex2 = Gk(x1), x2 > 0 is transversal
with respect to a vector field of system (3.4) and the
solution x1(t), x2(t) traverses this curve ”top-down”
(Fig.3)

Figure 3.

We can prove similarly that the curvex2 =
Fk(x1), x2 < 0 is transversal with respect to the vector
field of system (3.4) and the solutionx1(t), x2(t)
transverses this curve ”top-down” (Fig.3).
Thus, we have a family of closed transversal curves,

which are shown in Fig. 3. This family depends on
the integer parameterk and for any point of the space
{x1, x2} it can be found a closed transverse curve,
containing inside this point. This implies at once the
boundedness of any solution of system (3.4) in the
time interval(0, +∞). Besides, from Fig. 3 and the
relationẋ1(t) = x2(t) it follows that for any solution
x1(t), x2(t) either there exists a pair of numbersτ > 0
andk such that

x2(τ) = 0, x1(τ) ∈ (σ2 + 2kπ, σ1 + 2(k + 1)π)

or there existsk such that

lim
t→+∞

x2(t) = 0,

lim
t→+∞

x1(t) ∈ [σ2 + 2kπ, σ1 + 2(k + 1)π].

This implies that for any solutionx1(t), x2(t) of
system (3.4) there exists a numberT > 0 such that
it satisfies the following condition.
For t ≥ T the solutionx1(t), x2(t) belongs for the

certaink to the setΦk (Fig. 4):

Φk = Ωk ∪ Ψk ∪ Ωk+1

Ωk = {x1 ∈ [σ1 + 2kπ, σ2 + 2(k + 1)π],

Fk(x1) ≤ x2 ≤ Gk+1(x1)}
Ψk = {x1 ∈ [σ2 + 2(k + 1)π, σ1 + 2(k + 1)π],

F̃k+1(x1) ≤ x2 ≤ G̃k+1(x1)}.

Figure 4.

Here F̃k(σ) and G̃k(σ) are solutions of equations
(3.7) and (3.8), respectively, satisfying the following
properties:

F̃k(σ1 + 2kπ) = 0

F̃k(σ) < 0, ∀σ ∈ (σ2 + 2kπ, σ1 + 2kπ)

G̃k(σ2 + 2kπ) = 0

G̃k(σ) > 0, ∀σ ∈ (σ2 + 2kπ, σ1 + 2kπ).

From Fig. 4 we see that the setsΦk are positively
invariant. In addition, either for allt ≥ T the solution
x1(t), x2(t) is situated inΨk, either there existsτ ≥ T

such that for allt ≥ τ this solution is situated inΩk or
Ωk+1.
In the first case we obtain the relation

lim
t→+∞

|x1(t) +
σ1 + σ2

2
+ 2kπ| ≤ |σ1 − σ2|. (3.11)

Since for smallε we have

σ1 = π + ε + o(ε)

σ2 = π − ε + o(ε),



inequality (3.11) yields relation (3.3) forC > 1.
Consider now the case whenx1(t), x2(t) is situated in

Ωk for all t ≥ τ .
Let us construct a continuum family of transversal

curves.
Suppose that̃σ1 and σ̃2 are zeros, of the functions

sin σ+ε andsin σ−ε, respectively, on the set[−π, π),
such thatcos σ̃1 > 0 and σ̃2 > 0. Clearly, σ̃1 =
−ε + o(ε), σ̃2 = ε + o(ε).
Without loss of generality, consider the caseΩ−1.
Introduce the parameterρ ≥ ρ0 ≥ σ̃2.
We choose the numberρ0 in such a way that in the

half-plane{F ≤ 0} the solution of equation (3.7) with
the initial dataF (ρ) = 0 has the following property

F (σ) < 0, ∀σ ∈ (−ν, ̺), F (−ν) = 0, −ν > −ρ.

Similarly, in the half-plane{G ≥ 0} the solution of
equation (3.8) with the initial dataG(−ρ) = 0 has the
property:

G(σ) > 0, ∀σ ∈ (−ρ, ν), G(ν) = 0, ν < ρ.

It is easily shown, as before, that the curvesx2 =
F (x1), x2 = G(x1) are transversal for system (2.3)
(Fig. 5)

Figure 5.

Thus, in the setΩ−1 we constructed a family of the
transversal closed curvesγ(ρ) of the type

x2 = G(x1), x1 ∈ (−ρ, ν)

x2 = 0, x1 ∈ (ν, ρ)

x2 = F (x1), x1 ∈ (−ν, ρ)

x2 = 0, x1 ∈ (−ρ,−ν).

It follows that for the solutionx1(t), x2(t), of system
(3.4), fromΩ−1 there exists a numberτ such that for
t ≥ τ this solution is inside the curveγ(ρ), ρ > ρ0.
Determine now the numberρ0, making use of the

smallness ofε.

By the linearization of systems of comparison (3.5)
and (3.6) equivalent to equations (3.7) and (3.8),
respectively, fora ≥ 2 we obtain at once the following
relation

ρ0 = σ2. (3.12)

Fora < 2 for a linearized system we have the formula

ρ0 =
1 + P

1 − P
ε. (3.13)

Thus, for smallε > 0 the estimate

lim
t→+∞

|x1(t)| ≤ ρ < ρ0

is satisfied.
Then from (3.12) and (3.13) we obtain estimate (3.3).
Theorem 2 is proved.
Note that Theorem 2 permits the extensions for

different nonautonomous nonlinear two-dimensional
systems with cylindrical phase space in the spirit of
the works [Leonov, 2006; Leonov, 2006; Leonov,
2001; Leonov, Burkin and Shepelyavyi, 1996; Leonov,
Ponomarenko and Smirnova, 1996; Leonov, Reitmann,
1987].
Estimate (3.3) implies that for smallε the inequality

lim
t→+∞

| sin x(t)| ≤ Cε

is valid.
Then from condition (3.2) we can prove the following
Theorem 3. For any solution of equation (3.1) the

estimates

lim
t→+∞

|ẋ(t)| ≤ C + 1

a
ε (3.14)

lim
t→+∞

|ẍ(t)| ≤ 2(C + 1)ε (3.15)

are satisfied.

4 The proof of the lack of a Sommerfeld effect
We now apply Theorems 1–3 to system (2.2),

assumingt = τ
√

I, p(τ) = mε

I
z̈ sin(

√
Iωτ +θ). From

Theorem 1 it follows that for any solution of system
(2.2) with the initial dataθ̇(0) = z(0) = ż(0) = 0 for
the certaink we have the relation

|p(t)| ≤ mεL

I
, ∀ t ≥ 0.



Then by Theorems 2 and 3 we obtain the estimates

lim
t→+∞

|θ(t) + kπ| ≤ C
mεL

I
, a =

α√
I

lim
t→+∞

|θ̇(t)| ≤ (C + 1)mεL

α
√

I

lim
t→+∞

|θ̈(t)| ≤ 2(C + 1)

I
mεL.

Applying this estimates and elementary trigonometric
transformations to the second equation of system (2.7),
we obtain the relation

Mz̈ + βż + cz = mεω2 cosωt + O(ε2),

which is satisfied for larget.
This implies that after the transient process in

synchronous machine it is established an operating
mode with the rotor speedω + O(ε), in which case
the vibrations of elastic platform are harmonic with the
frequencyω + O(ε) and the amplitude

mεω2

|Mω2 − c − βiω| + O(ε2).

Thus, if the eigenfrequency of elastic platform is
less thanω, then for the asynchronous actuation in a
transient process the system: ”synchronous machine –
elastic platform”, always jumps the resonance and puts
on synchronous operation.
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