LINULTLUUVO, Jdllit FFTlTlolduly, Ndoola, Jullc, ou—July, & cJUUVO

THE PASSING THROUGH RESONANCE OF
SYNCHRONOUS MACHINE ON ELASTIC PLATFORM

Gennady A. Leonov
Department of Applied Cybernetics,
Mathematics and Mechanics Faculty,
Saint-Petersburg State University,
Russian Federation

leonov@math.spbu.ru

Abstract and mathematical models of synchronous machine,

In the present paper it is proved that for synchronous which are more complicated than (1.1). In this case
machine on elastic platform with asynchronous it turns out that synchronous motors have internal
actuation, the Sommerfeld effect is lacking for any stabilizing properties, preventing the occurrence of
passing through resonance. Sommerfeld effect.
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synchronous motor on elastic platform
Recall the classical equations of "machine—elastic
1 Introduction platform” system in the case of model (1.1) [Blekhman,
The present paper was stimulated by the work Indeitsev and FradkOV, 2007; Blekhman, 1971;
[Blekhman, Indeitsev and Fradkov, 2007], where Panovko, Gubanova, 1979] (Fig. 1):
in the neighborhood of resonance a "hanging” of
oscillation frequency of machine on elastic platform
was observed. This "hanging” is realized in the
form of random oscillations [Blekhman, Indeitsev and
Fradkov, 2007] and is often called a Sommerfeld effect
[Blekhman, Indeitsev and Fradkov, 2007; Blekhman,
1953; Blekhman, 1971; Blekhman, 2000; Fidlin, 2006;
Panovko, Gubanova, 1979; Kononenko, 1964].

In studying a Sommerfeld effect a conventional .
mathematical model of machine was the following - N
equation [Blekhman, Indeitsev and Fradkov, 2007; Q mI
Blekhman, 1953; Blekhman, 1971; Blekhman, 2000; .| - -
Fidlin, 2006; Panovko, Gubanova, 1979; Kononenko, ” 7
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Ip = G(g) (1.1) ,

Iy =G(p) + mezsinp

; : (2.1)
MZ + B2 4 cz = —me(cos p)**

Figure 1.
Herey(t) is a phasey(t) is instantaneous frequency

of rotation of motor armatureG(z) is so-called
"machine characteristic minus load’js a moment of
inertia of rotor. Herey is a phase of rotor rotation,is a deviation of

In the present work it will be shown that under platformfrom equilibriumA7 is a mass of platformmn
natural assumptions for synchronous machine with is @ mass of rotor] is a moment of inertia of rotor;
asynchronous actuation a Sommerfeld effect does notand/3 are coefficients of elasticity and viscous friction,
occur for any passing of resonance. This fact is basedrespectivelyg is an eccentricity.
on a joint consideration of motions of elastic platform As a mathematical model of synchronous machine we



regard the following equation Rewrite system (2.2) in the following way

16 = —af —sin 6. Ié—msésin(wt—i—@) = —af —sinf
M% —mefsin(wt 4+ 0) = =32 —cz+  (2.7)
Then for the system: "synchronous motor — elastic + me(cos(wt + 0))(w + 9')2.

platform” we obtain in a similar way the equation

. ) System (2.7) is equivalent to the system
10 = —af — sin 6 + meZ sin(wt + 0)

(2.2)
MzZ4p24cz=— t+0))** 2 N .
£+ B2+ ez = —me(cos(wt +0)) (I - —(W]L\/E[) (sin(wt + 9))2) 0= —af—
Herew is a frequency of current in stator winding, —sinf+ me . . {4 0)) (=83 — cat (2.8)
# is a phase difference of a rotating magnetic field st M (sin(w ?)( Bz —cz
and a rotor [Leonov, 2006; Leonov, 2006}, is a + me(cos(wt + 0))(w + 0)?)

coefficient of damper windings. When the motor is
asynchronously actuated, we have the relatii) =
2(0) = 6(0) = 0.

Having performed the change of variable <M _ (mIE)Q (sin(wt + 9))2> P =—F3—
z=u+ xcos(f +wt), x= _me — 2+ me((f + w)® cos(wt + 0))+ (29)
) M )

+ mTE sin(wt + 0)(—af — sin §)

from the second equation of system (2.2) we obtain
Consider further the functiol’ = 62 + 32 and the

L Bme values off andz such that
Mi+ fu+ cu = (cos(0 + wt))*+
P (2.3)
+ ——(cos(0 + wt)) V=R (2.10)
M
. N . Itis clear that (2.10) yields the i liti
Relationz(0) = 0 implies the estimate 's clear that ( ) yields the inequalities
0] < VR (2.11)
me
< — 2.4
[u(0)| < == (2.4)
and from the relations |2 < VR (2.12)
2(0) = 60(0) =0 For a derivative of the functiol along trajectories of
system (2.8), (2.9) we obtain the relation
we have _
% ’ —af — sinf+
=V = o —abf — sin
[(0)] < [sew] = T (25) 20 11 - g sin(wt +6)?)
M me . .
+ Y sin(wt 4+ 6)(—02 — cz2+
From equation (2.3) and estimates (2.4), (2.5) we Py 0)2
obtain the following inequality + me(cos(wt + . Nw+6)7T+
z
+ M (me)? . 0)2 [_62}_ cz+
u() < Qe. VE>0 (= T st +07)
+ me((0 4 w)? cos(wt + )+
Here () is a number, depending on the parameters + ? sin(wt + 0)(—af — sin §)]

B, ¢, m, M,w. This inequality implies the estimate

From estimates (2.6), (2.11), (2.12), and relation

|z(t)] < De, Vt>0 (2.6) (2.10) it follows that for sufficiently larg& and small
¢ the following estimate holds

where D is a number, depending on the parameters .
B,e,m, M,w. V < —6R + EcR?



Hereé andE are certain positive numbers, depending
on the parameters, ¢, m, M, w, I, a.

It is obvious that for sufficiently smalle €

[0, £0], £0 eo(R) this estimate results in the
inequality

V<0

Then from relation (2.10) it follows that for the
considered solution of system (2.2) with the initial data
2(0) =0, 2(0) = 0,60(0) = 0 the inequality

A2 4+0)2 <R, Yt>0

is satisfied for sufficiently large? (with respect to
the parameterd, M, m, 3,c,a,w) and smalle €
[0, 20(R)].

Thus, we have the following

Theorem 1.For sufficiently smalk > 0 the solution
6(t), z(t) with the initial datad(0) = z(0) = 2(0) = 0
satisfies the estimate

0(t) < L, |2(t)] <L,
|Z(t)| < L, |Z(t)| < L, Vt >0

for sufficiently largeL.

3 Asymptotical estimates of solutions of
pendulum type equation for small nonstationary
disturbances

Consider now the equation

&+ at + sinz = p(t) (3.1)

wherea is a positive numberp(t) is a continuous
function, satisfying the following condition

Vte R!

lp()| <e, (3.2)

Here ¢ is a certain positive number, which, by
assumption, is small with respectdoand1: ¢ < a,

e 1.

Theorem 2.For any solution of equation (3.1) there
exists an integer numbérsuch that the inequality

t@ |z(t) + k7| < Ce (3.3)
is valid.
HereC satisfies the relations
C>1 for a>2
1+P arm
C>—— P= — for 2
“1-p eXp( \/4—a2> ¢

Proof. Consider a system, which is equivalent to
equation (3.1),

T =1
S (34)
&o = —axg —sinxzy + p(t)

and the so-called systems of comparison [Leonov,
2006]

i‘2=$2

. : (3.5)
T9g = —aTo —SINT] — &

To =1

o . (3.6)
Tog = —axg —SINT] + €

It is well known [12] that for sufficiently smalt all
solutions of systems (3.5) and (3.6) are bounded on the
time interval(0, +0c). Therefore [Leonov, 2006] there
exist the solutiong; (o) andGy (o) of the equations

F'F +aF +sinc = —¢ (3.7)

G'G+aG +sino =¢ (3.8)

which satisfy the relations (Fig. 2)

Fy(o1 +27k) =0

Fy(o) <0, Yo > o1 + 2knw
Fi(o) >0, Yo < o1 + 2knm
UlLrI;O |Fi(0)] = 400

Gr(o2 +2km) =0
Gi(o) <0, Yo > o9 + 2k
Gi(o) >0, Yo < o9 + 2k

lim |Gg(o)| = +o0

(3.10)

Hereo; andoy are zeros, of the functionsno + ¢
andsin o — ¢, respectively, on the s@, 27), such that
coso1 < 0andcosoy < 0.

Consider now the solution:;(t), z2(t), of system
(3.4), which for the certain satisfies the condition

l'g(t) = Gk(xl (t)) >0

Obviously,
Zo(t) _ —aGg(z1(t)) —sinz (t) + p(t)) <
i (1) G (x1(t))
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Figure 2.

—aGr(x1(t)) —sinz(t) + ¢
Gr(z1(t))

de (I)
dx

=1 (t)

Hence the curves = Gi(x1), 2 > 0 is transversal
with respect to a vector field of system (3.4) and the
solution x4 (t), z2(t) traverses this curve "top-down”

(Fig.3)

Gy

5,2
X1

Figure 3.

We can prove similarly that the curves
Fy.(xz1), x2 < 0is transversal with respect to the vector
field of system (3.4) and the solution (), z2(t)
transverses this curve "top-down” (Fig.3).

Thus, we have a family of closed transversal curves,

which are shown in Fig. 3. This family depends on
the integer parametérand for any point of the space

{z1,22} it can be found a closed transverse curve,
containing inside this point. This implies at once the

boundedness of any solution of system (3.4) in the

time interval(0, +00). Besides, from Fig. 3 and the
relationz; (t) = x2(t) it follows that for any solution
x1(t), z2(t) either there exists a pair of numbers- 0
andk such that

0, xz1(7) € (02 + 2km,01 + 2(k + 1))

or there exist% such that

t—lgi-noo I'Q(t) - 0’
, 1121 x1(t) € [og + 2k, 01 + 2(k + 1)7].

This implies that for any solution;(t), z2(t) of
system (3.4) there exists a numt&r> 0 such that
it satisfies the following condition.

Fort > T the solutionz(t), z2(t) belongs for the
certaink to the se®;, (Fig. 4):

P, =0, UL U Qk+1

Qr = {x1 € [01 + 2km, 00 + 2(k + 1)7],
Fi(z1) <22 < Giga(z1)}

Uy, ={z1 € [o2+2(k+ 1)m,01 + 2(k+ 1)7],

Ec\—i—/l(xl) <z < 6'2:1(&61)}

Figure 4.

Here F.(c) and Gi(o) are solutions of equations
(3.7) and (3.8), respectively, satisfying the following
properties:

Fr(oy + 2kn) =0

Fy(o) <0, VYo € (024 2kn, 01+ 2kn)
(N;k(og +2km)=0
Gr(o) >0, Vo € (02 + 2km, 01 + 2k).

From Fig. 4 we see that the sebs are positively
invariant. In addition, either for all > T the solution
x1(t), z2(t) is situated in¥, either there exists > T'
such that for alk > 7 this solution is situated if2;, or

k+1-

In the first case we obtain the relation

Tm o (f) + 2022

— 400

+ 2km| < |o1 — o2|. (3.11)

Since for smalk we have

o1 =m+e+o0(g)
o9 =7 —e+o0(e),



inequality (3.11) yields relation (3.3) far > 1. By the linearization of systems of comparison (3.5)
Consider now the case when(t), 22 (t) is situated in and (3.6) equivalent to equations (3.7) and (3.8),

Qp forall ¢t > 7. respectively, form > 2 we obtain at once the following
Let us construct a continuum family of transversal relation
curves.

Suppose thab; and o, are zeros, of the functions

) . ; po = O3. (3.12)
sin o + ¢ andsin o — ¢, respectively, on the st r, ),
such thatcoso; > 0 andoz; > 0. Clearly,o; =

—e+o(g), 020 =¢+0(e). Fora < 2 for a linearized system we have the formula
Without loss of generality, consider the cdge; .

Introduce the parametgr> pg > o5. 14 P

We choose the numbey, in such a way that in the PO =T pE (3.13)

half-plane{ F' < 0} the solution of equation (3.7) with

the initial dataF'(p) = 0 has the following propert
(o) g property Thus, for smalk > 0 the estimate

F(o)<0, Vo€ (-v,p0), F(—v)=0, —v> —p. _

(o) (—v,0), F(-v) p T (o] < p < po

t——+oo

Similarly, in the half-plang{G > 0} the solution of
equation (3.8) with the initial dat&(—p) = 0 has the s satisfied.
property: Then from (3.12) and (3.13) we obtain estimate (3.3).
Theorem 2 is proved.

Note that Theorem 2 permits the extensions for
different nonautonomous nonlinear two-dimensional
systems with cylindrical phase space in the spirit of

G(o) >0, Voe(—pv), Gu)=0, v<p.

It is easily shown, as before, that the curves = the works [Leonov, 2006; Leonov, 2006; Leonov,

F(z1), o = G(x1) are transversal for system (2.3) 2001; Leonov, Burkin and Shepelyavyi, 1996; Leonov,

(Fig. 5) Ponomarenko and Smirnova, 1996; Leonov, Reitmann,
1987].

Estimate (3.3) implies that for smallthe inequality

lim |sinz(t)| < Ce

t——+o0

. is valid.
Ea Then from condition (3.2) we can prove the following
Theorem 3. For any solution of equation (3.1) the
estimates
— . C+1
Figure 5. til+moo & (t)] < a < (3.14)
Thus, in the sef)_; we constructed a family of the — . <
transversal closed curvesp) of the type t—lg-noo [#(t)] < 2(C + 1)e (3.15)
2o = G(z1), 1 € (—p,v) are satisfied.
xe =0, 1€ (v,p)
xo = F(x1), z1 € (—v,p) 4 The proof of the lack of a Sommerfeld effect
22=0, x1 € (—p,—V). We now apply Theorems 1-3 to system (2.2),

assuming = 7v/1, p(7) = 2 zsin(v/Iwr+6). From
Theorem 1 it follows that for any solution of system

It follows that for the solutionz, (¢), x2(t), of system (2.2) with the initial datag(o) = 2(0) = 2(0) = 0 for
(3.4), fromQ_; there exists a number such that for  the certaink we have the relation

t > 7 this solution is inside the curvg(p), p > po.
Determine now the numbes,, making use of the

melL
smallness of. Ip(t)| <

I )

vt >0.



Then by Theorems 2 and 3 we obtain the estimates lvanovo-Smolenskii, A. V. (1980). Electrical
machinesEnergiya. Moscau.
— mel @ Uynko-Trinitskii, A. A. (1958). New method for
Jdm [0(t) +kr| < C——, a= NG analysis of operation of synchronous engines for
jump-like loadsGosenergoizdat. Moscau-Leningrad.

Iim [6(t)] < €+ Vmel Leonov, G. A. (2006)The control theorylzd. SPb.
oo a1 univ. SPb.

T [6(1)] < 200+ o Leonov, G. A. (2006). The phase synchronization.
t—+00 1 Theory and applicatioAutomatika i Telemekhanika

10, pp. 47-85.
Applying this estimates and elementary trigonometric Leonov, G. A. (2006). Families of transversal curves
transformations to the second equation of system (2.7), for two-dimensional systems of differential equations

we obtain the relation Vestnik St.Petersburg Univ., Mai.pp. 48—78.
Leonov, G. A. (2001).Mathematical Problems of
M3+ B2 + cz = mew? coswt + O(2), C_ontrol Theory. An IntroductianWorld Scientific.
Singapore.

Leonov, G. A., Burkin, I. M. and Shepelyavyi, A. 1.

Whi(_:h i§ saFisfied for large . . (1996). Frequency methods in oscillation theory
This implies that after the transient process in | wer Academic Publishers. Dordrecht.

synchronous machine it is established an operatingl_eonov G. A.. Ponomarenko. D. V. and Smirnova

mode with the rotor speed + O(e), in which case V. B. (1996). Frequency-domain methods for
the vibrations of elastic platform are harmonic with the | Jiinear analysis. Theory and applicationaiorld

frequencyw + O(e) and the amplitude Scientific. Singapure.

Leonov, G. A, Reitmann V.  (2006).
Attraktoreingreniang fir nichtlineare Systeme
Teubner. Leipzig.

maw2

|[Mw? — ¢ — Biw| +

O(e?).

Thus, if the eigenfrequency of elastic platform is
less thanw, then for the asynchronous actuation in a
transient process the system: "synchronous machine —
elastic platform”, always jumps the resonance and puts
on synchronous operation.
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