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Abstract
The author considers the planar rotational motion of

the mathematical pendulum with its pivot oscillating
both vertically and horizontally, so the trajectory of the
pivot is an ellipse close to a circle. The analysis is based
on the exact rotational solutions in the case of circular
pivot trajectory and zero gravity. The conditions for ex-
istence and stability of such solutions are derived. As-
suming that the amplitudes of excitations are not small
while the pivot trajectory has small ellipticity the ap-
proximate solutions are found both for high and small
linear damping. Comparison between approximate and
numerical solutions is made for different values of the
damping parameter.
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1 Introduction
Elliptically excited pendulum (EEP) is a mathemati-

cal pendulum in the vertical plane whose pivot oscil-
lates not only vertically but also horizontally with π/2
phase shift, so that the pivot has elliptical trajectory,
see Fig. 1. EEP is a natural generalization of pendu-
lum with vertically vibrating pivot that is one of the
most studied classical systems with parametric excita-
tion, so it is often referred to simply as parametric pen-
dulum, see for example [Lenci, Pavlovskaia, Rega and
Wiercigroch, 2008; Xu and Wiercigroch, 2007; Bo-
golyubov and Mitropol’skii, 1961; Seyranian, Yabuno
and Tsumoto, 2005] and references therein.
Dynamics of EEP has been studied numerically and

analytically in [Horton B, Sieber J, Thompson and
Wiercigroch, 2008]. Approximate oscillatory and ro-
tational solutions for EEP are the common exam-
ples in literature [Blekhman, 1954; Blekhman, 1979;
Blekhman, 2000; Akulenko, 2001] on asymptotic
methods. Sometimes EEP is presented in a slightly
more general model of unbalanced rotor [Blekhman,

1954; Blekhman, 1979; Blekhman, 2000], where the
phase shift between vertical and horizontal oscillations
of the pivot can differ from π/2. EEP is also a special
case of generally excited pendulum in [Trueba, Bal-
tanáas and Sanjuáan, 2003].
The usual assumption for approximate solution in the

literature is the smallness of dimensionless damping
and pivot oscillation amplitudes in the EEP’s equation
of motion. The author could find only one paper [Fidlin
and Thomsen, 2008], where oscillations of EEP with
high damping and yet small relative excitation were
studied.
In the present paper we study rotations of EEP with

not small excitation amplitudes and with both small and
not small linear damping. Our analysis uses the exact
solutions for EEP with the absence of gravity and with
equal excitation amplitudes, when elliptical trajectory
of the pivot becomes circular. 1

The paper is organized as follows. In Section 2 the
dimensionless equation of EEP motion is derived. In
Section 3 the exact rotational solutions and their stabil-
ity conditions are obtained in the case, with no grav-
ity and the circular trajectory of the pivot. In Section
4 first and second order approximate solutions are ob-
tained by multiple scale method [Nayfeh, 1973] for the
close to circle trajectory of the pivot and high damp-
ing, where we assume that gravity is small or the fre-
quency of excitation is high. In Section 5 for the same
excitation and small damping second order approxi-
mate solutions are obtained with the use of averaging
method [Bogolyubov and Mitropol’skii, 1961; Volosov
and Morgunov, 1971]. In Section 6 both solutions in
Sections 4 and 5 are compared with the numerical so-
lutions for different values of the damping parameter.

2 Main relations
Equation of EEP’s motion can be derived with the use

of angular momentum alteration theorem (e. g. [Hor-

1When there is no gravity the model of EEP coincides with that
of hula-hoop, see [Belyakov and Seyranian, 2010] and references
therein.



Figure 1. Scheme of the elliptically excited mathematical pendu-
lum of length l. The pivot of the pendulum moves along the elliptic
trajectory (dashed line) with semiaxisX and Y .
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where l is the distance between the pivot and the con-
centrated massm; c is the viscous damping coefficient;
θ is the angle of the pendulum deviation from the ver-
tical position; t is time; g is gravitational acceleration.
It is assumed that the pivot of the pendulum moves

according to the periodic law

x = X sin(Ωt), y = Y cos(Ωt), (2)

where X , Y , and Ω are the amplitudes and frequency
of the excitation.
We introduce the following dimensionless parameters

and new time

ε =
Y −X

2 l
, µ =

Y +X

2 l
> 0,

ω =
1

Ω

√
g

l
, β =

c

m l2 Ω
, τ = Ωt, (3)

in which equation (1) with substituted (2) in it takes the
following form

θ̈+βθ̇+µ sin(τ + θ) = ε sin(τ − θ)−ω2 sin(θ), (4)

were we use formula Y cos(Ω t) sin(θ) +
X sin(Ω t) cos(θ) = Y+X

2 sin(Ω t+ θ) −
Y−X

2 sin(Ω t− θ). Here the upper dot denotes
differentiation with respect to new time τ .

3 Exact rotational solution when ε = 0 and ω = 0
Conditions ε = ω = 0 mean that we find the mode of

rotation for the circular excitationX = Y with absence
of gravity g = 0. In this case, we call equation (4) the
unperturbed equation

θ̈ + βθ̇ + µ sin(τ + θ) = 0 (5)

which has exact solutions

θ = θ0 − τ, (6)

where constants θ0 are defined by the following equal-
ity

sin(θ0) =
β

µ
, (7)

provided that |β| ≤ µ.
To investigate the stability of these solutions we

present the angle θ as θ = θ0−τ+η, where η = η(τ) is
a small addition, and substitute it in equation (5). Then
linearizing in (5) and using equality (7), we obtain the
linear equation

η̈ + βη̇ + µ cos(θ0)η = 0, (8)

According to the Lyapunov stability theorem, solution
(6) is asymptotically stable according to the linear ap-
proximation if all eigenvalues of linearized equation (8)
have negative real parts. Which happens when the fol-
lowing inequalities are satisfied

β > 0, µ cos(θ0) > 0, (9)

obtained from the Routh–Hurwitz conditions. From
conditions (9), assumption µ > 0 in (3), and equality
(7), it follows for β > 0 that the solutions

θ = θ0 − τ, θ0 = arcsin

(
β

µ

)
+ 2πk (10)

are asymptotically stable, while the solutions

θ = θ0 − τ, θ0 = π − arcsin

(
β

µ

)
+ 2πk (11)

are unstable, where k is any integer number. For nega-
tive damping, β < 0, both these solutions are unstable.
From now on we will assume that the following condi-
tions are satisfied

0 < β < µ, (12)



which ensure the existence of stable rotational solution
(10) as it is seen from (7) and (9). Indeed, in order
to guarantee asymptotic stability β should be not only
positive, but also strictly less than µ because of the sec-
ond condition in (9), which can be transformed to in-
equality µ cos(θ0) =

√
µ2 − β2 > 0 with the use of

the positive root for µ cos(θ0) from (7).

4 Approximate rotational solutions when ε ≈ 0
and ω ∼

√
ε

We assume that values of ε and ω2 are small of the
same order of smallness, i.e. ε ∼ ω2 ≪ 1, so we can
introduce new parameter w = ω2/ε.
One can deduct from (3) and current assumptions that

either gravity g is small or the frequency of excitation Ω
is high with such damping c and mass m so that damp-
ing coefficient β ∼ 1.
All small terms are in the right-hand side of equation

(4). To solve equation (4) we will use multiple scale
method [Nayfeh, 1973]. In this method general solu-
tion of equation (4) is assumed to be of the following
form

θ = −τ + θ0 + εθ1 + ε2θ2 + . . . (13)

A series of time scales (independent variables), T0, T1,
. . ., is introduced, where T0 = τ , T1 = ετ , . . .. So
that θ is a function of these time scales, θ(T0, T1, . . .).
Using the chain rule, the time derivatives become

d

dτ
= D0 + εD1 + ε2D2 + . . . (14)

d2

dτ2
= D2

0 + 2εD0D1 + ε2(D0D2 +D2
1) + . . .(15)

where Dm
n = ∂m/∂Tm

n . Next the general solution and
the time derivatives are substituted into equation (4),
where sines are expended into the Taylor series with
respect to ε. By grouping together the terms with the
same powers of ε and equating to zero, a set of differ-
ential equations is obtained,

D2
0θ0 + βD0(θ0 − T0) + µ sin(θ0) = 0, (16)

D2
0θ1 + βD0θ1 + µ cos(θ0)θ1

= −(2D0D1 + βD1)(θ0 − T0)

+ sin(2T0 − θ0) + w sin(T0 − θ0), (17)
D2

0θ2 + βD0θ2 + µ cos(θ0)θ2

= µ sin(θ0)θ
2
1/2− (2D0D1 + βD1)θ1

−(D0D2 +D2
1 + βD2)(θ0 − T0)

− (cos(2T0 − θ0) + w cos(T0 − θ0)) θ1, (18)
. . .

where we denote w = ω2/ε. We have already found
solution (6) for equation (16) in the previous section.

Here we consider the same stable regular rotations 1:1
whose zero approximation is given by (10). Hence,
θ0 is a constant and consequently we have (2D0D1 +
βD1)(θ0 − T0) = 0 and (D0D2 + D2

1 + βD2)(θ0 −
T0) = 0. Thus, equations (17) and (18) can be written
in the following way

D2
0θ1 + βD0θ1 +

√
µ2 − β2θ1

= sin(2T0 − θ0) + w sin(T0 − θ0) (19)

D2
0θ2 + βD0θ2 +

√
µ2 − β2θ2

= βθ21/2− (2D0D1 + βD1) θ1

− (cos(2T0 − θ0) + w cos(T0 − θ0)) θ1, (20)

where we denote µ sin(θ0) = β and µ cos(θ0) =√
µ2 − β2 with the use of relation (7) and the second

condition in (9).

4.1 First order approximation
In consequence of conditions (12) non-homogeneous

linear differential equation (19) can be presented in the
following form

D2
0θ1 + βD0θ1 +

√
µ2 − β2θ1

= A1 cos(T0) +B1 sin(T0)

+A2 cos(2T0) +B2 sin(2T0) , (21)

where A1 = −wβ/µ, B1 = w
√
1− β2/µ2, A2 =

−β/µ, B2 =
√
1− β2/µ2, lower index denotes har-

monic number. Equation (21) has a unique periodic
solution

θ1(T0) = a1 cos(T0) + b1 sin(T0)

+ a2 cos(2T0) + b2 sin(2T0) , (22)

where

a1 = − (1−
√

µ2−β2)A1+βB1

µ2+1−2
√

µ2−β2
,

b1 =
−βA1+(1−

√
µ2−β2)B1

µ2+1−2
√

µ2−β2
,

a2 = − (4−
√

µ2−β2)A2+2βB2

3β2+µ2+4(4−2
√

µ2−β2)
,

b2 =
−2βA2+(4−

√
µ2−β2)B2

3β2+µ2+4(4−2
√

µ2−β2)
.

Thus, the solution for (4) in the first approximation
can be written as follows

θ = −τ + θ0

− ε
2 β cos(2T0−θ0)+

(
4−

√
µ2−β2

)
sin(2T0−θ0)

3β2+µ2+8(2−
√

µ2−β2)

− ω2
β cos(T0−θ0)+

(
1−

√
µ2−β2

)
sin(T0−θ0)

µ2+1−2
√

µ2−β2
, (23)

where constant θ0 is defined in (10).



4.2 Second order approximation
Since (22) does not contain any constant of integra-

tion we set (2D0D1 + βD1)θ1 = 0 in equation (20)
and substitute in it an expression cos(2T0 − θ0) +
w cos(T0 − θ0) = B1 cos(T0) − A1 sin(T0) +
B2 cos(2T0)−A2 sin(2T0) with coefficients defined in
(21). Thus, equation (21) takes the following form

D2
0θ2 + βD0θ2 +

√
µ2 − β2θ2

=
A′

0

2
+

4∑
n=1

(A′
n cos(nT0) +B′

n sin(nT0)) ,(24)

where coefficients in the right-hand side are the follow-
ing

A′
0 =

(
b22 + b21 + a22 + a21

)
β

+ (A1b1 +A2b2 −B2a2 −B1a1),

A′
1 = (a1a2 + b1b2)β

+ (A1b2 +A2b1 −B1a2 −B2a1)/2,

A′
2 =

(
a21 − b21

)
β/2− (A1b1 +B1a1)/2,

A′
3 = (a1a2 − b1b2)β

− (A2b1 +A1b2 +B1a2 +B2a1)/2,

A′
4 =

(
a22 − b22

)
β/2− (A2b2 +B2a2)/2

B′
1 = (a1b2 − b1a2)β

− (A1a2 −A2a1 +B1b2 −B2b1)/2,

B′
2 = β a1b1 + (A1a1 −B1b1)/2,

B′
3 = (a1b2 + b1a2)β

+ (A1a2 +A2a1 −B1b2 −B2b1)/2,

B′
4 = β a2b2 + (A2a2 −B2b2)/2.

Periodic solution for equation (24) has the following
form which is obtained from (13) in the Appendix to
[Belyakov, 2011]

θ2(T0) =
A′

0

2
√
µ2 − β2

(25)

−
4∑

n=1

(n2−
√

µ2−β2)A′
n+nβB′

n

(n2−1)β2+µ2+n2(n2−2
√

µ2−β2)
cos(nT0)

−
4∑

n=1

−nβA′
n+(n2−

√
µ2−β2)B′

n

(n2−1)β2+µ2+n2(n2−2
√

µ2−β2)
sin(nT0) ,

where constant term is derived from (13) taking A0 =
A′

0/2. Thus, second order approximate solution can be
shortly written in the following form

θ = −τ + θ0 + εθ1(τ) + ε2θ2(τ), (26)

where constant θ0 is defined in (10), function θ1 in (22),
and function θ2 in (25). In Fig. 2 it is shown how first
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Figure 2. Angular velocities θ̇ calculated from the first order ap-
proximate solution (23), second order approximate solution (26), and
results of numerical simulation, when damping coefficient β is not
small. Parameters: δ = 0, µ = 1, ω = 0.3, ε = 0.2,
β = 0.5.

and second order approximate solutions approach the
numerical solution.
In this section we have used the fact that all solu-

tions in each time scale must converge to correspond-
ing unique periodic solutions because damping β is not
small. If it is not the case the multiple scale analysis
becomes more complicated. In the next section we will
tackle the problem of small damping β ∼

√
ε with the

use of classical averaging technique.

5 Approximate rotational solutions when ε ≈ 0,
ω ∼

√
ε, and β ∼

√
ε

One can see in (3) that assumptions ω ∼ β ∼
√
ε are

valid for the high frequency of excitation Ω ∼ 1/
√
ε

with other parameters being of order 1. Another option
is small gravity g ∼ ε along with small ratio c/m ∼√
ε.

After change of variable θ = −τ +
√
εϑ equation (4)

takes the following form

ϑ̈+ µϑ− β̂ = µ

(
ϑ− sin(

√
εϑ)√
ε

)
−
√
εβ̂ϑ̇

+
√
ε sin

(
2τ −

√
εϑ
)
+
√
εw sin(τ −

√
εϑ), (27)

with small right-hand side, where we denote β̂ =
β/

√
ε and as in the previous section w = ω2/ε. With

zero right-hand side equation (27) ϑ̈ + µϑ − β̂ = 0
would describe harmonic oscillations about β̂/µ value
with frequency

√
µ. After Taylor’s expansion of sines

in the right-hand side of (27) about ϑ = 0 we obtain
the following equation

ϑ̈+ (µ+ ε cos(2τ) + εw cos(τ))ϑ− β̂ = −
√
εβ̂ϑ̇

+
√
ε sin(2τ) +

√
εw sin(τ) + εµ

ϑ3

6
+ o(ε), (28)



which describes oscillator with both basic and paramet-
ric excitations. To solve equation (28) we will use av-
eraging method [Bogolyubov and Mitropol’skii, 1961;
Volosov and Morgunov, 1971]. For that purpose we
will write (28) in the standard form of first order dif-
ferential equations with small right-hand sides. First,
we use Poincaré variables q and ψ defined via the fol-
lowing solution of generating system ϑ̈ + µϑ − β̂ = 0
which is (28) with ε = 0

ϑ =
β̂

µ
+ q cos(ψ), ϑ̇ = −√

µq sin(ψ). (29)

In Poincaré variables equation (28) becomes a system
of first order differential equations

q̇ = − sinψ
√
µ
f(τ, q, ψ), (30)

ψ̇ =
√
µ− cosψ

q
√
µ
f(τ, q, ψ), (31)

where small function f(τ, q, ψ) =
√
εf1(τ, q, ψ) +

εf2(τ, q, ψ)+ o(ε) is the right hand side of (27), where

f1(τ, q, ψ) = sin(2τ) + w sin(τ) + β̂q
√
µ sin(ψ), (32)

f2(τ, q, ψ) = − (cos(2τ) + w cos(τ))

(
β̂

µ
+ q cos(ψ)

)

+
µ

6

(
β̂

µ
+ q cos(ψ)

)3

, (33)

meaning that f(τ, q, ψ) = O(
√
ε). Our next assump-

tion is that
√
µ − 1 ∼

√
ε which means that excita-

tion frequency is close to the first resonant frequency
of basic excitation component sin(τ) and to the first
resonant frequency of parametric excitation component
cos(2τ) in equation (28). Thus, system (30), (31) is
transformed by ψ = ζ + τ to the standard form

q̇ = − 1
√
µ
sin(ζ + τ) f(τ, q, ζ + τ) , (34)

ζ̇ =
√
µ− 1− 1

q
√
µ
cos(ζ + τ) f(τ, q, ζ + τ) ,(35)

with small right-hand side, where new slow variable ζ
is often referred to as phase mismatch.

5.1 First order approximation
In the first approximation so called averaged equa-

tions can be obtained by averaging the system (34),

(35) over period 2π

Q̇ = −
√
ε

2π
√
µ

∫ 2π

0

sin(Z + τ) f1(τ,Q, Z + τ) dτ

+ o(
√
ε), (36)

Ż =
√
µ− 1

−
√
ε

2π
√
µQ

∫ 2π

0

cos(Z + τ) f1(τ,Q,Z + τ) dτ

+ o(
√
ε), (37)

where Q and Z are the averaged variables correspond-
ing to q and ζ. After taking the integrals we have the
following system

Q̇ = −
√
εw

2
√
µ
cos(Z)−

√
εβ̂

2
Q+ o(

√
ε), (38)

Ż =
√
µ− 1 +

√
εw

2
√
µQ

sin(Z) + o(
√
ε), (39)

stationary solutions (Q̇ = 0, Ż = 0) of which are the
following

Q2 =
ω2/ε

µ (4(
√
µ− 1)2 + β2)

+ o(1), (40)

Z = arctan

(
2(µ− 1)

β

)
+ 2πk + o(1), (41)

where we have substituted back w = ω2/ε and β̂ =
β/

√
ε. Symbol arctan stands for the principal value of

the function on the interval from 0 to π. Note that the
phase Z is determined to within 2π rather than π, since
the functions sin(Z) and cos(Z) obtained from equa-
tions (38) and (39) determine Z up to an additive term
2πk. Solution of system (34-35) in the first approxima-
tion is q = Q + o(1), ζ = Z + o(1) so the solution of
(4) is the following

θ = −τ + β

µ
+
√
εQ cos(Z + τ) + o(

√
ε), (42)

which does not contain higher harmonics observed nu-
merically. That is why we need to proceed to the sec-
ond order approximation.



5.2 Second order approximation
In the second approximation averaged equations can

be obtained as follows

Q̇ =

(
−
√
ε cos(Z) +

εβ̂

4

(
4

µ
− 1

)
sin(Z)

)
w

2
√
µ

+

(
−
√
εβ̂

2
+

ε

4
√
µ
sin(2Z)

)
Q+ o(ε), (43)

Ż =
√
µ− 1

+

(
√
ε sin(Z) +

εβ̂

4

(
4

µ
− 1

)
cos(Z)

)
w

2
√
µQ

− εβ̂2

8

(
2

µ
√
µ
+ 1

)
+

ε

4
√
µ
cos(2Z)

−
ε
√
µ

16
Q2 + o(ε), (44)

stationary solutions (Q̇ = 0, Ż = 0) can be found nu-
merically or with absence of gravity (ω = 0) analyti-
cally. Solution of system (34-35) in the second approx-
imation is the following

q = Q+

√
ε

2
√
µ

(
− sin(τ − Z) +

w

2
sin(2τ + Z)

+
1

3
sin(3τ + Z)

)
+

√
ε
β̂ Q

4
sin (2τ + 2Z)

+ o(
√
ε), (45)

ζ = Z +

√
ε

2
√
µQ

(
cos(τ − Z) +

w

2
cos(2τ + Z)

+
1

3
cos(3τ + Z)

)
+
√
ε
β̂

4
cos (2τ + 2Z)

+ o(
√
ε), (46)

Substitution of these expressions into (29) yields the
second order approximate solution of (27) in the fol-
lowing form

ϑ =
β̂

µ
+Q cos(Z + τ) +

√
ε
β̂ Q

4
sin(Z + τ)

+

√
εw sin(τ)

4
√
µ

−
√
ε sin(2τ)

3
√
µ

+ o(
√
ε) (47)

which after changes of variable θ = −τ +
√
εϑ and

parameters w = ω2/ε, β̂ = β/
√
ε results in the ap-

proximate solution of the original equation (4)

θ = −τ + β

µ
+

√
εQ cos(Z + τ) +

√
ε
β Q

4
sin(Z + τ)

+
ω2 sin(τ)

4
√
µ

− ε sin(2τ)

3
√
µ

+ o(ε). (48)
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Figure 3. Angular velocity θ̇ calculated from the first order ap-
proximate solution (42) and second order approximate solution (48)
compared with the results of numerical simulations in the case of
small damping β. Parameters: δ = 0, µ = 1, ω = 0.3,
ε = 0.2, β = 0.01. Steady state averaged variables Q and
Z are given by expressions (40) and (41) for the first approximation
while for the second approximation they are obtained numerically
(Q = 2.0348, Z = 2.6838) from the second order averaged
equations (43), (44).

Agreement of solution (48) with the numerical experi-
ment is shown in Fig. 3. We see that the amplitude of
angular velocity oscillations is much higher than that
for not small β in Fig. 2.

6 Domains of applicability
For asymptotic solutions in the previous two sections

the parameter constraints are more strict than those for
the existence of stable exact solution in (12). Thus, for
our analysis in Section 4 to be valid we must exclude
cases when β = o(1) or/and

√
µ2 − β2 = o(1). The

case when β = o(1) and µ = O(1) is studied in Sec-
tion 4. Note that the case when both β = o(1) and
µ = o(1) meaning

√
µ2 − β2 = o(1) has already been

studied in the literature, for example in the more gen-
eral model of unbalanced rotor in [Blekhman, 1954].
The case when β = O(1) and µ = o(1) is not fea-
sible for asymptotic rotational solution. Indeed, with
such assumptions the generating system θ̈ + βθ̇ = 0
has only constant solutions. These different cases are
presented in the Table 1.
To show quantitatively the limits of applicability of

the assumptions in Sections 4 and 5 we plot the abso-
lute and relative angular velocity errors depending on
parameter β while excitation was constant µ = 1, see
Fig. 4.

7 Conclusion
The exact rotational solutions in the case of equal ex-

citation amplitudes and zero gravity are obtained. The
conditions for existence and stability of such solutions



small β not small β

small µ studied in the literature no rotations

not small µ studied in section 5 studied in section 4

Table 1. Model assumptions on smallness of dimensionless damping β and dimensionless semiaxes half-sum µ of the ellipse along which the
pivot of the pendulum moves in the problem to find pendulum rotations. In all cases we assume that dimensionless half-difference ε of semiaxes
is small as well as ω2.
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Figure 4. Maximal absolute (left) and relative (right) deviation of analytically obtained angular velocities θ̇ in (23), (26), and (48) from the
numerically obtained θ̇. Solution (48) specially obtained for better approximation at small damping β. Error in the right graph is calculated
relative to the oscillation amplitude of angular velocity θ̇. Parameters: δ = 0, µ = 1, ω = 0.3, ε = 0.2.

are derived. Based on these exact solutions the approx-
imate solutions are found both for high and small lin-
ear damping, assuming that the amplitudes of excita-
tions are not small. Comparison between approximate
and numerical solutions shows a good agrement for the
damping values of the assumed order.
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