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Abstract
Linear SISO time-invariant continuous systems with

time delay are considered. A sufficiently rapid zero-
order hold sampling of such a system leads to the
discrete-time model with two subsets of zeros, namely
so-called intrinsic zeros and sampling (or limiting)
ones. Intrinsic zeros depend on original zeros almost
exponentially, while sampling zeros are asymptotically
close to the zeros of Euler polynomials. More accu-
rately, they converge to the zeros of Euler polynomials
in the case of zero time delay. This well known result
is extended here to the case of positive time delay. It is
shown that limiting zeros depend on the relative degree
and on an additional parameter eps which is equal to
the fractional part of the quotient of the time delay and
the sampling period. Polynomials having those zeros
are called here generalized Euler polynomials. They
coincide with ordinary Euler polynomials if eps=0. It
is shown that all zeros of generalized Euler polynomi-
als are negative and simple. They monotonically vary
between the neighboring zeros of the corresponding or-
dinary Euler polynomial when eps grows from 0 to 1.
Since zeros of the ordinary Euler polynomial are pair-
wise mutually inverse, we obtain a criterion for a sam-
pled system to be stably invertible.
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1 Introduction
Let single-input/single-output (SISO) continuous-

time system be influenced by a zero-order hold (ZOH)
input with a sampling period h. Then samples of in-
put and output for this system satisfy a certain dif-
ference equation, which describes the so-called ZOH
discrete model of original continuous-time system, or
prototype. It is well known from [Åström, Hagan-
der and Sternby, 1980] and [Åström, Hagander and
Sternby, 1984] that zeros of a discrete model may be
divided into two groups. The first group consists of
so-called intrinsic zeros; they have the form ehµj(h),

where µj(h) → µj as h → 0, and µj are zeros of
the prototype system. The second group is composed
of sampling zeros, whose limits depend on the relative
degree of the prototype only. It was shown in [Weller,
Moran, Ninness and Pollington, 2001] that these limits
are the roots of the Euler (or Euler-Frobenius) polyno-
mials. Using the known properties of these polynomi-
als (see, for example, [Sobolev 1977]), one may con-
clude that these limits are real negative, simple, and
pairwise mutually inverse. Thus a discrete model can-
not be stably invertible if it has more then one sampling
zero and the sampling period h is sufficiently small.
One should note here that the quantity of sampling ze-
ros is smaller by 1 than the relative degree of the proto-
type for all sufficiently small h.

The object of this article is to extend the results men-
tioned above to continuous-time prototypes with time
delay. In this case sampling zeros also exist (even more
by 1,i.e. their quantity is equal to the relative degree).
Their limits depend not only on the relative degree but
on ϵ too, where ϵ is the fractional part of the quotient
of the time delay by the sampling period. Polynomi-
als having these zeros are called here generalized Euler
polynomials. They coincide with ordinary Euler poly-
nomials if ϵ = 0. Their zeros are not mutually inverse,
but they are real, negative, and monotonically move be-
tween neighboring roots of the ordinary Euler polyno-
mials while ϵ varies from 0 to 1. This fact allows to ob-
tain sufficient and almost necessary conditions of stable
invertibility of the discrete model.

2 ZOH Models and Impulse Invariance
Transform

Let us consider continuous systems

a(p)y(t) = b(p)u(t− θ), t ∈ [0,∞), (1)
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where t denotes continuous time, u(t) is input, y(t) is
output, pjy(t) = djy(t)/dtj , θ is time delay,

a(λ) =
n∏

j=1

(λ− λj), b(λ) = b0

m∏
j=1

(λ− µj), (2)

m < n, b0 ̸= 0.
Let the input have a ZOH form:

u(kh+ ε) = uk, ε ∈ [0, h), k = 0, 1, . . . , (3)

where h is a positive constant sampling period. Define
a natural number ϑ such that

θ = h[(ϑ− 1) + ε], ε ∈ [0, 1). (4)

Any input like (3) yields that the difference equation

α(∇)yk = β(∇)uk−ϑ, k = 0, 1, . . . , (5)

is valid for input samples uk and output samples yk =
y(kh), where ∇ means forward shift operator, ∇iyk =
yk+i,

α(λ) =
n∏

j=1

(λ− ehλj ),

β(λ) = β0λ
n + β1λ

n−1 + . . .+ βn,

(6)

and polynomial β(λ) should be established because
namely its roots are zeros of ZOH-sampled system (1).
Let us consider any matrix triple (A,B,C) such that

pair (A,C) is observable, det(λI − A) = a(λ),
C(λI −A)−1B = b(λ)/a(λ). For example, it may be

A =


0 0 . . . −an
1 0 . . . −an−1

0 1 . . . −an−2

. . .
...

0 0 . . . 1 −a1

 , B =


bn
bn−1

bn−2

...
b1

 ,

C =
[
0 0 . . . 0 1

]
,

where ai and bj are the coefficients of the polynomials
(2): a(λ) = λn+λn−1a1+ . . .+an, b(λ) = λn−1b1+
. . . + bn. Now we are able to rewrite (1) in the state-
space form:

ẋ(t) = Ax(t) +Bu(t−Θ), y(t) = Cx(t). (7)

Using Cauchy formula to solve this equation for time
intervals [(k+ε−1)h, (k+ε)h] and [(k+ε−1)h, kh],
we obtain{

xk+1 = P (h)xk +Q(h)uk−θ,

yk = R(h, ε)xk + S(h, ε)uk−θ,
(8)

where xk = x(k + θ)h,

P (h) = ehA, Q(h) =

h∫
0

esAdsB,

R(h, ε) = Ceh(1−ε)A, S(h, ε) = C

h(1−ε)∫
0

esAdsB.

Since equation (8) describes the state-space form of the
discrete model (5), the desired polynomial β(λ) may be
written as

β(λ) = α(λ)
[
S(h, ε) +R(h, ε)(λI − P (h))−1Q(h)

]
.

(9)
The equation (9) gives us a possibility to obtain all

required results about zeros of sampled system, but
this straightforward method requires rather cumber-
some computations. Another way seems to be more
simple. It uses so-called impulse invariance-transform
of an auxilliary continuouse-time prototype. Namely,
we will consider the system

pa(p)y(t) = b(p)u(t− θ) t ∈ [0,∞), (10)

and its state-space form

ẋ(t) = Ax(t) +Bu(t−Θ), ẏ(t) = Cx(t),

or, equivalently,

ż(t) = Ãz(t) + B̃u(t−Θ), y(t) = C̃z(t), (11)

where C̃ = [0 . . . 0 1],

Ã =

[
A 0
C 0

]
, B̃ =

[
B
0

]
, z(t) =

[
x(t)
y(t)

]
.

Next, we consider the discrete-time system

zk+1 = ehÃzk + e(1−ε)hÃB̃uk−ϑ, yk = C̃zk (12)

with the transfer function λ−ϑχh(λ), where

χh(λ) = C̃(λI − ehÃ)−1e(1−ε)hÃB̃. (13)

The discrete-time impulse response of the system (12)
coincides with the continuous-time impulse response
of the prototype at the moments kh, k = 0, 1, . . . .
For this reason the system (12) is called an impulse
invariance-transform of the prototype (11). Zeros of
this system are the roots of the polynomial α̃(λ)χh(λ),
where α̃(λ) = (λ − 1)α(λ) is the characteristic poly-
nomial of the matrix ehÃ.
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Theorem 1. The sets of zeros for the discrete ZOH-
model (5) of the original prototype (1) and of the im-
pulse invariance model (12) of auxilliary prototype
(11) coincides.

Proof. We compute the zeros of the system (12), i.e.
the roots of the equation

(λ− 1)α(λ)χh(λ) = 0. (14)

Consider the matrix function

G(t) =

[
etA 0

C
∫ t

0
esAds 1

]
.

Since G(0) = I and Ġ(t) = ÃG(t), G(t) = etÃ. Let
z be a solution of the equation

[λI −G(h)]z = G((1− ε)h)B.

Then

z =

[
x
y

]
, x = (λI − ehA)−1e(1−ε)hAB,

(λ− 1)y = C

∫ h

0

esAds x+ C

∫ (1−ε)h

0

esAdsB.

Hence the equation (14) is equivalent to β(λ) = 0,
where β(λ) is the polynomial (9). The theorem is
proved.
Thus we can consider roots of the polynomial
α̃(λ)χh(λ) as zeros of sampled system (5).

3 Asymptotics of Intrinsic and Sampling Zeros
First we estimate the number of zeros. The relative

degree of the system (1) is r = n−m. Then

C̃B̃ = 0, C̃ÃjB̃ = CAj−1B = 0, j = 1, . . . , r − 1,

C̃ÃrB̃ = CAr−1B = b0 ̸= 0.

Hence the relative degree of the transfer function (13)
is equal to 1 for all sufficiently small h.
Indeed, consider the leading term of the polynomial

(9) as an analytic function of the complex argument h:

β0 = β0(h) = C̃e(1−ε)hÃB̃ =

= C̃
∞∑
j=0

[(1− ε)h]j

j!
ÃjB̃ =

∞∑
j=0

[(1− ε)h]j+1

(j + 1)!
CAjB.

(15)
Assume that there exist hj → 0 such that β0(hj) = 0,
j = 0, 1, . . . . Then β0(hj) ≡ 0 and CAjB = 0 for
all j in opposition that b0 = CAr−1B ̸= 0. Hence
β0(h) ̸= 0 for all sufficiently small h, q.e.d.
Thus the sampled system (5) has n zeros.

Lemma 1. The sampled system (5) has m intrinsic ze-
ros ehµj(h), where µj(h) → µj , j = 1, 2, . . . ,m.

Proof is almost the same as in [Bondarko, 1984 ]. Fix
µi. Denote the multiplicity of this root of b(λ) as
qi. Consider the disk ci(r) = {λ : |λ − µj | < r}
and its boundary ∂ci(r). Let r be small enough so
that ci(r) does not containe other roots of b(λ) ex-
cept µj . We compare two analytic functions: ζh(λ) =
λa(λ)χh(e

hλ) and b(λ) = λa(λ)C̃(λI − Ã)−1B̃.
Since

ζh(λ)− b(λ) = λa(λ)C̃
[
(λI − ehÃ)−1e(1−ε)hÃ−

−(λI − Ã)−1
]
B̃ →

h→0
0

uniformly in λ ∈ ∂ci(r), we have |ζh(λ) − b(λ)| <
|b(λ)| for all sufficiently small h. Using Rouchet theo-
rem, we obtain that ζh(λ) and b(λ) have the same num-
ber of zeros in ci(r), i.e. qi. Since r may be chosen to
be arbitrarily small, these zeros of ζh(λ) tend to µi as
h → 0. Thus the lemma is proved, because

∑
i qi = m.

Introduce (d × d)-matrices Ad and Ed(ρ), (d × 1)-
matrices Bd and (1× d)-matrices Cd:

Ad =


0 0 . . . 0
1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1 0

 , Bd =


1
0
...
0

 ,

Cd =
[
0 0 . . . 0 1

]
, Ed(ρ) = eρAd ,

for all d = 1, 2, . . ., ρ ∈ [0, 1]. Define generalized
Euler polynomials

ξd,ϵ(λ) = (d− 1)! det

[
λI − E(1) −E(ϵ)Bd

Cd 0

]
d = 1, 2, . . . . (16)

Polynomials ξd,0(λ) coincide [Weller, Moran, Nin-
ness and Pollington, 2001] with the well known Euler
(or Euler-Frobenius) polynomials.
Let us denote by νd,j(ε) all the roots of ξd,ε(λ), j =
1, 2, . . . , d− 1.

Lemma 2. Sampled system (5) has r = n − m sam-
pling zeros κj(h), where κj(h) → νr+1,j(1 − ε) as
h → 0, j = 1, 2, . . . , r.

Proof. Modify the continuous time scale: τ = t/h.
Denote yh(τ) = y(hτ), uh(τ) = hru(hτ). Then the
equation (1) yields

ah(d/dτ)yh(τ) = bh(d/dτ)uh(τ − θ/h), τ ∈ [0,∞),
(17)
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where

ah(λ) = λn + ha1λ
n−1 + . . .+ hnaN ,

bh(λ) = brλ
m + br+1hλ

m−1 + . . .+ hmbn.

The discrete-time model of (17) with sampling period
1 obviously has the same zeros as (5) and (12). On
the other hand, the roots are equal to the roots of the
polynomial

βh(λ) = det

[
λI − eÃh −e(1−ε)ÃhB̃(h)

Cr 0

]
, (18)

where

Ãh =



0 0 . . . −hnan 0
1 0 . . . −hn−1an−1 0
0 1 . . . −hn−2an−2 0

. . .
...

0 0 . . . 1 −ha1 0
0 0 . . . 0 1 0


, B̃h =



hmbn
...
br
0
...
0


.

Obviously

Ãh → An+1 =

[
Am 0m×m

A21 Ar+1

]
, B̃h → br

[
0m
Br+1

]

as h → 0, where 0m×m and 0m are zero matrices of
corresponding dimensions,

A21 =


0 . . . 0 1
0 . . . 0 0
...

...
...

0 . . . 0 0

 .

Hence βh(λ) coefficient wise tends to

brdet

λI − eAm

0 λI − eAr+1 e(1−ε)Ar+1Br+1

0 Cr+1 0

=

= br(λ− 1)mξr+1,(1−ε)(λ)

as h → 0. Thus m zeros of the sampled system tend to
1 (they are intrinsic zeros) and r zeros tend to the roots
of ξr+1,(1−ε)(λ), q.e.d.
Summing the lemmas 1,2 and the equation (15) we

obtain

Theorem 2. Let the continuous-time prototype (1)
have m zeros µj , j = 1, 2, . . . ,m. Suppose that
θ = h[(ϑ − 1) + ε], where θ is the time delay, h is
the sampling period, ϑ is natural number, ε ∈ [0, 1).

Then the transfer function of ZOH-sampled system (5)
has the form

hrbr(h)

r!λϑα(λ)

r∏
j=1

(λ−νr+1,j(1−ε, h))
m∏
i=1

(λ−ehµi(h)),

where

br(h) → br = b0, µi(h) → µi,

νr+1,j(1−ε, h) → νr+1,j(1−ε)

as h → 0, b0 is the leading term of the polynomial b(λ)
in (2), νr+1,j(1−ε) denote the roots of the generalized
Euler polynomials (16).

4 Disposition of the Roots of Generalized Euler
Polynomials

At least since [Frobenius, 1910], it is known that all
roots of ξd,0(λ) are single and negative real for any d;
thus we can assume that νd,j(0) are sorted in descend-
ing order. Besides it is known that these zeros are pair-
wise mutually inverse:

νd,j(0) = 1/νd,d−1−j(0). (19)

Furthermore, the roots of ξd,0(λ) interlace the roots of
ξd+1,0(λ) on the negative real axis:

0 > νd+1,j(0) > νd,j(0) > νd+1,j+1(0),

j = 1, 2, . . . , d− 2, d = 3, 4, . . . .
(20)

Now complete the set of νd,j(0) by νd,0(0) = 0. It is
easily seen that

νd,j(1) = νd,j−1(0), j = 1, 2, . . . , d− 2. (21)

Indeed, the obvious identity (λI − E)−1E = λ(λI −
E)−1 − I and Shur’s lemma yield

ξd,1(λ)

(d− 1)!
=det

[
λI − E(1) −E(1)Bd

Cd 0

]
=

=(λ− 1)dCd[λI − E(1)]−1E(1)Bd =

=(λ− 1)dCd

{
λ[λI − E(1)]−1 − I

}
Bd =

=λdet

[
λI − E(1) −Bd

Cd 0

]
= λ

ξd,0(λ)

(d− 1)!
,

(22)

because BdCd = 0.
Therefore, the disposition of νd,j(ϵ) is clear for ϵ = 0

and for ϵ = 1; yet what about intermediate values of ϵ?
The answer is given by
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Theorem 3. The roots of ξd,ϵ(λ) interlace the roots of
ξd+1,ϵ(λ) on the negative real axis:

0 > νd+1,j(ϵ) > νd,j(ϵ) > νd+1,j+1(ϵ) (23)

for any ϵ ∈ [0, 1], j = 1, 2, . . . , d − 2, d = 3, 4, . . . .
These roots are continuous increasing functions of ϵ:

νd,j(ϵ1) < νd,j(ϵ2) (24)

for 0 < ε1 < ε2 ≤ 1, j = 1, 2, . . . , d − 2, d =
3, 4, . . . .

The disposition of limiting zeros is shown in figure 1.

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

Figure 1. Zeros of generalized Euler polynomials ξd,ϵ(λ) (blue
curves) and ξd+1,ϵ(λ) (red curves) as functions of ϵ ∈ [0, 1].

Let us consider the functions

ζd,ϵ(λ) =
Bd,ϵ(λ)

(d− 1)!(λ− 1)d
=

= (λ− 1)dCd[λI − E(1)]−1E(ϵ)Bd =

=
[
ζ1,0(λ) ζ2,0(λ) . . . ζd,0(λ)

]


sd−1

(d− 1)!
...
s
1

 =

=
d−1∑
i=1

sd−iζi,0(λ)/(d− i)! . (25)

instead of polynomials (16). They have the same zeros
νd,j(ϵ).
Examine the first pair of ζd,ϵ(λ) in order to apply in-

duction:

ζ2,ϵ(λ) =(ϵλ− ϵ+ 1)/(λ− 1)2, ν2,1(ϵ) = (ϵ− 1)/ϵ,

ζ3,ϵ(λ) =
1

2(λ− 1)3
[ϵ2λ2 + (1 + 2ϵ− 2ϵ2)λ+ ϵ2 − ϵ+ 1],

ν3,1(ϵ) =
−2 ϵ+ 2 ϵ2 − 1 +

√
4 ϵ+ 1− 4 ϵ2

2ϵ2
,

ν3,2(ϵ) =
−2 ϵ+ 2 ϵ2 − 1−

√
4 ϵ+ 1− 4 ϵ2

2ϵ2
.

Thus the inductive assumptions (23),(24) are valid for
d = 2. Now we make the inductive step from d = k−1
to d = k.
Let d be odd (for definiteness only). Fix ϵ ∈ (0, 1) and

a negative λ∗ > νd+1,1(0), whose position is known
because it is the first zero of the ordinary Euler poly-
nomial Bd+1,0(λ). By (22) the values of ζd+1,0(λ∗)
and ζd+1,1(λ∗) have opposite signs (+ and −, respec-
tively). The equation (25) yields

dζd+1,ϵ(λ)

dϵ
= ζd,ϵ(λ). (26)

By the inductive assumption, ζd,ϵ(λ∗) = 0 for an
unique value of ϵ. Hence we could determine the func-
tion ϵd,1(λ) from the equation

ζd,ϵd,1(λ)(λ) = 0,

and this function would be continuous and increasing.
Therefore, ζd+1,ϵ(λ∗) decreases as a function of ϵ ∈
(0, ϵd,1(λ∗)), and then increases at ϵ ∈ (ϵd,1(λ∗), 1),
having the minimal value at ϵ = ϵd,1(λ∗), and this
value is negative:

ζd+1,ϵd,1(λ∗) ≤ ζd+1,1(λ∗) < 0.

Hence there exists a unique ϵ∗ ∈ (0, ϵd,1(λ∗)) such
that ζd+1,ϵ∗(λ∗) = 0. Define the function ϵd+1,1(·)
by the equality ϵd+1,1(λ∗) = ϵ∗. The implicit func-
tion theorem guarantees that ϵd+1,1(·) is a continu-
ous function for λ ∈ [νd+1,1(0), νd+1,0(0)]. Contin-
uous function should possess every intermediate value
between boundary values ϵd+1,1(νd+1,1(0)) = 0 and
ϵd+1,1(νd+1,0(0)) = 1. Hence there exists λ1(ϵ) ∈
(νd+1,1(0), νd+1,0(0)) such that ϵd+1(νd+1,1(0)) = ϵ,
i.e. ζd+1,ϵ(λ1(ϵ)) = 0. Note that

ϵd+1,1(λ) < ϵd,1(λ) (27)

A similar argument for λ∗ ∈ (νd+1,2(0), νd+1,1(0))
leads to the existence of

ϵd+1,2(λ) > ϵd,2(λ) (28)
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and λ2(ϵ) ∈ (νd+1,2(0), νd+1,1(0)) such that
ζd+1,ϵ(λ2(ϵ)) = 0, and so on down to λd(ϵ) <
νd+1,d(0). The only difference between the steps con-
sists of inequalities like (27) for odd j and (28) for even
indices j in numbering ϵd+1,j(λ) and λj(ϵ).
The numerator of ζd+1,ϵ(λ) is the polynomial
Bd+1,ϵ(λ) of degree d. Thus there remain no possi-
ble zeros of ζd+1,ϵ(λ). This yields the uniqueness of
every λj(ϵ) ∈ (νd+1,j(0), νd+1,j−1(0)). Thus every
λj(ϵ) is the inverse function to the continuous function
ϵd+1,j(λ) at λ ∈ (νd+1,j(0), νd+1,j−1(0)). The inverse
function theorem guarantees that νd+1,j(ϵ) = λj(ϵ) is
continuous, too, and both mutually inverse functions
are monotonic. Taking into account their boundary val-
ues, we obtain that these functions are increasing.
Denote by Gd,j the set consisting of points (ϵ, νd,j(ϵ))

in the plane (ϵ, λ). The inequalities of the sort (27) and
(28) mean that the continuous curve Gd,j lies between
Gd+1,j and Gd+1,j+1, see figure 1. This guarantees the
interlacing inequalities (23). Thus the inductive step
from d to d+ 1 is proved, as well as the theorem itself.
Corollary. If a prototype (1) has a zero µj with a

positive real part, then ZOH-sampling for a sufficiently
small sampling period h necessarily leads to a unstably
invertible sampled system (1) due to corresponding in-
trinsic zero ehµj(h). Suppose that the prototype (1) is
minimal-phase (i.e. that real parts of all µj are nega-
tive) and h is sufficiently small. Then

1. If the relative degree (i.e. n−m) of the system (1)
is equal to 1, the sampling zero of ZOH-sampled
system (5) tends to the zero of ξ2,ϵ(λ) = 1 − ϵ +
ϵλ as h → 0. Thus a sampled system is stably
invertible for ϵ < 1/2 and isn’t stably invertible
for ϵ > 1/2.

2. If d = n − m > 2, or d = 2 and ϵ ̸= 0, then
sampling zeros of the ZOH-sampled system (5) are
asymptotically close to the zeros of ξd+1,ϵ(λ), in-
cluding unstable ones. Thus sampled system can-
not be stably invertible.

The corollary doesn’t treat the case n − m = 2
and ϵ = 0 where the only one Euler polynomial zero
ν3,1(0) = −1 lies in the border of stability. In this case
the stable invertibility of the sampled plant depends on
the sign of

∑n
i=1 λi −

∑m
j=1 µj . This result is known

as the Hagiwara criterion [Hagiwara, Yuasa and Araki,
1993], it was also published in [Bondarko, 1991]. In
[Bondarko, 1996] this criterion was extended to the
case of infinite-dimensional systems. Anyway, condi-
tion ϵ = 0 is not robust relative to small deviations of
the moments when control input changes its values and
the moments when output is observed. By the virtue of
Theorem 3, even a very small difference between these

moments guarantees the existence of unstable limiting
zero, if the relative degree n−m is greater than 1.

5 Conclusion
A delayed sampled system has one more sampling

zero then an undelayed one. All sampling zeros are
asymptotically close to the roots of the newly intro-
duced generalized Euler polynomials, if the sampling
period h tends to zero. The properties of these roots are
studied in detail similarly to the classical results on the
ordinary Euler polynomials. In particular, this leads to
the following conclusion: if the relative degree of the
continuous prototype is equal to 1 and the fractional
part of quotient of delay and sampling period is less
then 1/2, the additional zero of the delayed sampled
system is stable for all sufficiently small h. Otherwise
a delayed sampled system is not stably invertible for all
sufficiently small h.
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