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Abstract— The controlled relative motion of a spacecraft
nearby an orbital station is considered. A rendezvous method
used on active spacecraft is an algorithm of proportional
navigation which is realized with some constant time delay.
The coefficient of the guidance law is considered as a control
variable. The problem of choice of the mentioned coefficient
which provides minimizing of rendezvous time, is analyzed.It
is found that the optimal solution includes regular and singular
control values both. The results of computer simulation are
given.

I. I NTRODUCTION

Proportional navigation, where the intercepting command
acceleration is applied normal to the line of sight (LOS)
[1], is one of the most widely used rendezvous algorithms
for moving objects of different destination, including space
vehicle. It was shown in [2] that this method is optimal in
the control problem of linear system with quadratic criterion.
In the papers [1], [3] – [5] the influence of parameters of
proportional navigation law and its various modifications on
the engagement time and closeness characteristics of the
rendezvous process was investigated. Those investigations
were held in assumption that guidance is realized without
delay. In [1] it was shown that in the absence of delay to
minimize the rendezvous time the coefficient of proportional
navigation law should be chosen maximal. At the same time
the delay in realistic guidance systems is inevitable and it
neglecting may lead to erroneous results. The analysis of the
pursuit-evasion problems taking into account time delay was
held in [6]–[9], where linearized kinematics were applied.In
[6] the optimal evasion problem against the pursuer which
used the proportional navigation strategy with time delay was
considered. It was shown that for the case of presence of time
delay the evader strategy changes essentially in comparison
with the strategy without delay.

The influence of the delay, considered as perturbation
parameter on the engagement time was investigated in [10].
A sensitivity analysis with respect to the value of the time
delay was also held in the mentioned paper.

In the present paper the terminal phase of plane ren-
dezvous of an active space vehicle and a passive orbital
station on the Earth orbit is considered. A rendezvous method
used on active spacecraft is an algorithm of proportional
navigation which is realized with some minor constant time
delay. The objective of this work is to optimize the guidance
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law taking time delay into account. The coefficient of navi-
gation law is considered as a control variable. The problem
is to determine the coefficient which provides minimizing of
rendezvous time.

II. PROBLEM STATEMENT

The relative motion is described by the system of nonlinear
differential equations in polar coordinates with center point
in the center of the station, which is also a center of
mass for the whole system. Both objects are considered as
point masses, and the distance between them is neglected in
comparison with the orbital radius. Active vehicle possesses
the precise information of relative motion parameters.
The equations of relative motion are:

ρ̈− ρϕ̇2 = aρ,

ρϕ̈+ 2ρ̇ϕ̇ = aϕ.
(1)

Hereρ is the range between the spacecraft and the station,
ϕ is the angle between the LOS and some constant direction
in the chosen polar coordinate system,aρ and aϕ are the
components of control acceleration applied to the active
vehicle, directed along and normal to the LOS (Fig.1).

Assume the commanded acceleration along the LOS is
equal to zero, and the acceleration normal to the LOS is
programmed with proportional navigation law

aϕ = kϕ̇(t− τ), (2)

whereτ is the constant time delay,k is the control variable,
a piecewise continuous time function bounded by

−k ≤ k(t) ≤ k. (3)

The control problem is to minimize the goal function

J = T → min, (4)

which is specified on the trajectories of the system (1),
(2) with the corresponding boundary conditions and control
limitation (3).

Fig. 1. Relative geometry



To take into account the time delay we rewrite the acceler-
ation aϕ as follows:

aϕ = ku(t), (5)

whereu(t) is described by the equation

τu̇(t) = ϕ̇(t) − u(t). (6)

Time delay was taken into account in a similar way for
example in [9].
Substituting (5) and (6) into (1) and rewriting it as a Cauchy-
type system, the following system of equations is obtained:

ρ̇ = v,

v̇ = ρω2,

ϕ̇ = ω,

ω̇ =
−2vω + ku

ρ
,

u̇ = θ(ω − u),

(7)

whereθ =
1

τ
.

The boundary conditions for (7) are:

t = 0 : ρ(0) = ρ0, v(0) = v0, ϕ(0) = ϕ0,

ω(0) = ω0, u(0) = u0,

t = T : ρ(T ) = ρT .

(8)

The problem (3), (4), (7), (8) is Mayer optimal control prob-
lem, to analyze it we’ll use Pontryagin maximal principle
[2].

III. O PTIMAL PROBLEM ANALYSIS

The Hamiltonian of the problem (3), (4), (7), (8) is

H = vψρ+ρω2ψv +ωψϕ+
ku− 2vω

ρ
ψω +θ(ω−u)ψu (9)

and the equations for adjoint variables are

ψ̇ρ = −ω2ψv +
ku− 2vω

ρ2
ψω,

ψ̇v = −ψρ +
2ω

ρ
ψω,

ψ̇ϕ = 0,

ψ̇ω = −2ρωψv − ψϕ +
2v

ρ
ψω − θψu,

ψ̇u = −
k

ρ
ψω + θψu.

(10)

Using transversality conditions we obtain the adjoint vari-
ables values at the final moment:

ψv(T ) = ψϕ(T ) = ψω(T ) = ψu(T ) = 0, H(T ) = 1. (11)

From (10), (11) and the stationary condition forH on the
optimal trajectory we getH(t) = 1 on [0;T ], ψϕ ≡ 0 on
[0;T ].
It follows from the condition for maximum of Hamiltonian
(9) that the extremal control satisfies the following criterion:

k =

{

k, H1 > 0

−k, H1 < 0,
(12)

whereH1 =
u

ρ
ψω is a switching function.

Clear up whether the singular control can exist in the consid-
ered problem. Suppose switching functionH1 is identically
equal to zero on some time interval[t1; t2] ⊆ [0;T ]. From
the condition

H1 =
u

ρ
ψω ≡ 0

the equalityψω ≡ 0 follows, otherwiseu ≡ 0, and the system
(7) becomes uncontrolled. As far aṡH1 ≡ 0 on [t1; t2], then,
differentiatingH1 by time by virtue of the systems (7) and
(10), we obtain:

ψ̇ω = −2ρωψv − θψu ≡ 0. (13)

Note thatψv 6= 0, otherwise it follows from (10) that all the
adjoint variables identically equal to zero, that contradicts to
maximum principle. From (13) we find:

ψu

ψv

= −
2ρω

θ
. (14)

Further,Ḧ1 ≡ 0 on [t1; t2]:

Ḧ1 = −
ψuθ

2ω

ρ
+
ψuθuv

ρ2
− 2θω2ψv + 2θuωψv−

−
2u2ψv

ρ
k +

4uvωψv

ρ
+ 2uωψρ ≡ 0.

(15)

Using stationary conditionH = 1 on [t1; t2] we can find:

ψρ + ρωψv(2u− ω) = 1. (16)

From (15) using (14), we find the singular control:

ks =
ωρ

u

(v

ρ
+
ψρ

ψv

+ θ
)

. (17)

Now (12) can be rewritten in the following way:

k =







k, H1 > 0
ks, H1 ≡ 0

−k, H1 < 0,
(18)

Consequently the optimal control problem (3), (4), (7), (8)
is formally reduced to the boundary problem for the system
of ordinary differential equations (7), (8), (10), (11) with the
rule for choosing of control (18). It is generally known that
numerical solution of the problems of optimal control with
singular paths leads to much difficulties. These difficulties
can be overcome if, for example, the structure of the optimal
trajectory is known, or the combination of singular and
nonsingular arches. To clear up the optimal control structure,
let’s consider the auxiliary problem for the reduced dynamic
system (7).



IV. A UXILIARY PROBLEM

Notice that in (7) the control variablek(t) appears only in
one equation. Hence we can pass on to an auxiliary problem
for the reduced system releasing the initial conditions forthe
variableω(t) and to strike off the equation foṙω:

ρ̇ = v,

v̇ = ρω2,

ϕ̇ = ω,

u̇ = θ(ω − u).

(19)

Considerω(t) as a control in this problem, the control
limitation is lacking. The similar procedure in general form
is described in [11], [12]. The goal function and the boundary
conditions for the other variables remain the same:

t = 0 : ρ(0) = ρ0, v(0) = v0,

ϕ(0) = ϕ0, u(0) = u0,

t = T : ρ(T ) = ρT .

(20)

The Hamiltonian of the problem (4), (19), (20) is:

H = ρψvω
2 + (ψρ + θψu)ω + vψρ − θuψu. (21)

The system for adjoint variables is:

ψ̇ρ = −ω2ψv,

ψ̇v = −ψρ,

ψ̇ϕ = 0,

ψ̇u = θψu.

(22)

Using transversality conditions we obtain the adjoint vari-
ables values att = T :

ψv(T ) = ψϕ(T ) = ψu(T ) = 0, H(T ) = 1. (23)

From the third and the forth equations of the system (22),
using adjoint variables values at the final moment (23), we
find: ψϕ ≡ 0, ψu = c1e

θt ≡ 0 on [0;T ].
To find the optimal control notice that the functionH (21) is
quadratic in controlω(t), and its maximum is reached when

ω =
−ψϕ − θψu

2ρψv
≡ 0 under the conditionρψv < 0.

Therefore, the optimal motion in the problem (4), (19), (20)
is constant motion along the LOS.

The auxiliary problem solution corresponds to the singular
arch of the optimal trajectory of the problem (3), (4), (7),
(8) and is obtained under the assumption that the starting
conditionω(0) is free, and the limitations (3) are lacking.
Hence, if the optimal trajectory of the problem (3), (4), (7),
(8) includes the singular arch andks satisfies the condition
(3), then this arch adjoins the extremity of the trajectory.
Substituting the auxiliary problem solutionω(t) ≡ 0 in (17),
we find the corresponding singular control valueks ≡ 0.

We cleared up the optimal control structure: the coefficient
k(t) of the proportional navigation law should be chosen
maximal in absolute value from the allowable classk = k

till the angular velocityω decreases to zero, then follows the
switching to the singular modek = 0 till the reach of the

given terminal rangeρT . Thus, the optimal control synthesis
looks like:

k =







[

−k, ω 6= 0

k, ω 6= 0
ks = 0, ω = 0.

(24)

It follows from the physical meaning of proportional nav-
igation that inclusion of motion path withk = −k in the
trajectory is not optimal, it is also confirmed by simulation.

V. COMPUTERSIMULATION

Consider system (7) with various control modes:

k =

{

k, t < ts
0, t > ts,

(25)

where the switching momentts varies fromts = 0 to ts = T .
The simulation is realized with the constant time delayτ =
0.1 and the following boundary conditions:

t = 0 : ρ0 = 1, v0 = −0.5, ϕ0 = 1,
ω0 = 1, u0 = 1,

t = T : ρT = 0.4
(26)

and control restrictionk = 5.
The system (7) was numerically integrated with chosen limit
values of the variables. The plot of rendezvous time (time of
reaching terminal rangeρT = 0.4) vs switching pointts is
shown in Fig.2.
The rightmost point of the plot corresponds to the control
mode, on which the proportional navigation law coefficient
is chosen constant and maximalk = k during the whole
approach time. Obviously, this mode is not optimal, because
there exists the mode with a switching, on which the required
terminal range is reached faster. With the chosen boundary
conditions and control limitations minimum of approach time
is reached under the control with the switching fromk = k

to k = 0 at ts = 0.325.
The plot ofω(t) vs time with k = k on [0;T ] is shown in
Fig.3. As can be seen from the picture, the angular velocity
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Fig. 2. Rendezvous time vs switching point
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Fig. 3. Relative angular velocity withk = k̄

ω decreases to zero att = 0.325, that corresponds to the
moment of switching tok = 0 under the optimal control.
The system (1) withaϕ = kϕ̇(t−τ) was also simulated with
the help of Matlab function ’dde23’, which allows to take
delay into account. The qualitative and quantitative closeness
of trajectories with smallτ was obtained. This fact confirms
our right to use the equation (6) for time delay.

VI. CONCLUSION

The problem of optimization of the proportional naviga-
tion law with a constant time delay was considered. It was
shown that the time delay essentially effects on the character
of optimal guidance. To minimize the rendezvous time of

a spacecraft and a passive orbital station the guidance law
coefficient should be chosen variable: maximal in absolute
value till the moment when the LOS angular velocity reaches
zero (regular control) and equal to zero till the end of the
process (singular control).
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