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Abstract— The controlled relative motion of a spacecraft law taking time delay into account. The coefficient of navi-
nearby an orbital station is considered. A rendezvous methb  gation law is considered as a control variable. The problem

used on active spacecraft is an algorithm of proportional s 1 getermine the coefficient which provides minimizing of
navigation which is realized with some constant time delay. rendezvous time

The coefficient of the guidance law is considered as a control
var_iable. T_he pro_bl_em_ _of choice of the m_entior_1ed coefficient 1
which provides minimizing of rendezvous time, is analyzedit

is found that the optimal solution includes regular and singilar The relative motion is described by the system of nonlinear
control values both. The results of computer simulation are (ijfferential equations in polar coordinates with centempo
given. in the center of the station, which is also a center of
mass for the whole system. Both objects are considered as

. L . . point masses, and the distance between them is neglected in
Proportional navigation, where the intercepting commangy ,narison with the orbital radius. Active vehicle posssss

acceleration is applied normal to the line of sight (LOS},e precise information of relative motion parameters.
[1], is one of the most widely used rendezvous algorithmg,o equations of relative motion are:

for moving objects of different destination, including spa ) _2
vehicle. It was shown in [2] that this method is optimal in P = PP = ap, 1)
the control problem of linear system with quadratic crieri pe+2pp = ag.

In the papers [1], [3] - [5] the influence of parameters Ofjere ) is the range between the spacecraft and the station,
proportional navigation law and its various modificatioms o o is the angle between the LOS and some constant direction
the engagement time and closeness characteristics of {heihe chosen polar coordinate system, and a,, are the
rendezvous process was investigated. Those investigatiddhmponents of control acceleration applied to the active
were held in assumption that guidance is realized withoyhicle, directed along and normal to the LOS (Fig.1).
minimize the rendezvous time the coefficient of proportlongqual to zero, and the acceleration normal to the LOS is

navigation law should be chosen maximal. At the same timgyogrammed with proportional navigation law
the delay in realistic guidance systems is inevitable and it

neglecting may lead to erroneous results. The analysiseof th ap, = ko(t — 1), (2

pursuit-evasion problems taking into account time delag W&, horer

held in [6]—-[9], where linearized kinematics were applied.

[6] the optimal evasion problem against the pursuer whic

used the proportional navigation strategy with time delagw —k <k(t) <k 3)

considered. It was shown that for the case of presence of ti

delay the evader strategy changes essentially in compari

with the strategy without delay. J =T — min, (4)
The influence of the delay, considered as perturbation N ] ]

parameter on the engagement time was investigated in [1 .h'Ch is specified on _the trajectories Of_ '_the system (1),

A sensitivity analysis with respect to the value of the timd2) With the corresponding boundary conditions and control

delay was also held in the mentioned paper. limitation (3).
In the present paper the terminal phase of plane ren-

dezvous of an active space vehicle and a passive orbital

station on the Earth orbit is considered. A rendezvous naktho

used on active spacecraft is an algorithm of proportional

navigation which is realized with some minor constant time

delay. The objective of this work is to optimize the guidance

. PROBLEM STATEMENT

|I. INTRODUCTION

is the constant time dela, is the control variable,
ﬂ piecewise continuous time function bounded by

;%%e control problem is to minimize the goal function
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To take into account the time delay we rewrite the accelejghere i, = % Y., is a switching function.

ation a,, as follows:

ap = ku(t), )
whereu(t) is described by the equation
ra(t) = ¢(t) — ult). ()

Time delay was taken into account in a similar way for

example in [9].

Clear up whether the singular control can exist in the censid
ered problem. Suppose switching functiéh is identically
equal to zero on some time intervil; t2] C [0;7]. From
the condition

Hl = "l}w 0

SRS

Substituting (5) and (6) _into (1) and rewriting it asa CaU_Chythe equalityy,, = 0 follows, otherwise: = 0, and the system
type system, the following system of equations is obtalned(:7) becomes uncontrolled. As far & = 0 on [t1;¢2], then,

p=v,
0 = pw?,
Y =w,
. —2vw + ku 7
Ww=——"",
p
u=0(w—u),
1
wheref = -
The boundary conditions for (7) are:
t=0: p(0)=po, v(0) =10y, ¥(0)= o,
W(O) = Wwo, U(O) = Uo, (8)
t=T: p(T)=pr.

The problem (3), (4), (7), (8) is Mayer optimal control prob-
lem, to analyze it we’ll use Pontryagin maximal principle

[2].
[1l. OPTIMAL PROBLEM ANALYSIS
The Hamiltonian of the problem (3), (4), (7), (8) is

5 ku — 2vw
H = v¢p+f)w wv+wwg@+ %+9(w*u)1lﬂu 9

and the equations for adjoint variables are

w'/) = _w2wv + ku;#wwv
. 2

u)v = *1/);) + %wwv

d).go =0, (10)
. 2

ww = —2Pw¢v - "l}c,o + %"/}w - kuv

: k
uw— — Yw ou
() pll) + 04

Using transversality conditions we obtain the adjoint vari
ables values at the final moment:

%(T) = ww(T) = ww(T) = wu(T) =0, H(T) =1. (11)

From (10), (11) and the stationary condition f&r on the
optimal trajectory we ge#(t) = 1 on [0;T], ¢, = 0 on
[0; 7.

It follows from the condition for maximum of Hamiltonian
(9) that the extremal control satisfies the following ciiter

k:{ E, Hy >0

%, H, <0, (12)

differentiating H; by time by virtue of the systems (7) and
(10), we obtain:

Yo

—2pwipy, — O, = 0. (13)

Note thaty, # 0, otherwise it follows from (10) that all the
adjoint variables identically equal to zero, that contcslio
maximum principle. From (13) we find:

w 2
Yu 2w (14)
y 0
Further, H, = 0 on [ty; ts]:
.. W02 .,
H, = —u + 11)_2uv — 20w, + 20uwip, —
2u§1/) 4ZUw1p, (15)
_ p”k+ ; =+ 2uwyp, = 0.

Using stationary conditiol/ = 1 on [t1;¢2] we can find:

Yp + pwiy(2u —w) = 1. (16)
From (15) using (14), we find the singular control:
wp v Y,
ks=—(—-+-—+80). 17
u <p i Yy " ) a7)
Now (12) can be rewritten in the following way:
E, H1 >0
k= ks, H1 =0 (18)
-k, H; <O,

Consequently the optimal control problem (3), (4), (7), (8)
is formally reduced to the boundary problem for the system
of ordinary differential equations (7), (8), (10), (11) withe
rule for choosing of control (18). It is generally known that
numerical solution of the problems of optimal control with
singular paths leads to much difficulties. These difficsltie
can be overcome if, for example, the structure of the optimal
trajectory is known, or the combination of singular and
nonsingular arches. To clear up the optimal control stmegtu
let's consider the auxiliary problem for the reduced dyrami
system (7).



IV. AUXILIARY PROBLEM given terminal ranger. Thus, the optimal control synthesis

. . . . looks like:
Notice that in (7) the control variabl(t) appears only in -k w#0
one equation. Hence we can pass on to an auxiliary problem k= k, w#£0 (24)
for the reduced system releasing the initial conditionsltier ks =0, w=0.

variablew(t) and to strike off the equation fab: ] . ]
It follows from the physical meaning of proportional nav-

p=u, igation that inclusion of motion path witk = —k in the

0 = pw?, (19) trajectory is not optimal, it is also confirmed by simulation
¢ =w,
= 0(w— u). V. COMPUTERSIMULATION

_ _ _ Consider system (7) with various control modes:
Considerw(t) as a control in this problem, the control

limitation is lacking. The similar procedure in generalrfor k= { kot <ts (25)

is described in [11], [12]. The goal function and the bougdar 0, t>ts,

conditions for the other variables remain the same: where the switching moment varies fromt, = 0tot, = 7.
t=0: p(0)=po, v(0) =y, The simulation is realized with the constant time detay

©(0) = o, u(0) = uo, (20) 0.1 and the following boundary conditions:

t=T: p(T)=pr. t=0: po=1, vg=-05, po=1,

The Hamiltonian of the problem (4), (19), (20) is: P ZO - 3,41«) =L (26)
= : 7 = 0.
H = pipow? + () + Othu)w + 015, — Outhy. (21)  and control restrictiork = 5.

The system (7) was numerically integrated with chosen limit
values of the variables. The plot of rendezvous time (time of
w‘p = —w2ih,, reaching terminal ranger = 0.4) vs switching pointt; is

; shown in Fig.2.

The system for adjoint variables is:

11/%“ z Ew’” (22)  The rightmost point of the plot corresponds to the control
w_w _ 9;1} mode, on which the proportional navigation law coefficient

is chosen constant and maximial= & during the whole
Using transversality conditions we obtain the adjoint variapproach time. Obviously, this mode is not optimal, because
ables values at = 7" there exists the mode with a switching, on which the required
terminal range is reached faster. With the chosen boundary
Yo(T) = ¢uo(T) =¥ (T) =0, H(T)=1.  (23) conditions and control limitations minimum of approache&im

] . is reached under the control with the switching frém= k
From the third and the forth equations of the system (22)q 1. — att, = 0.325.

using adjoint variables values at the final moment (23), wee plot ofw
find: 1, = 0, ¥, = c1e?* =0 on [0; T7.

To find the optimal control notice that the functiéh (21) is
quadratic in controlv(¢), and its maximum is reached when
w= Yo =% _ () under the condition, < 0. 15 : :

2p1py
Therefore, the optimal motion in the problem (4), (19), (20

is constant motion along the LOS.

The auxiliary problem solution corresponds to the singule L48r
arch of the optimal trajectory of the problem (3), (4), (7),
(8) and is obtained under the assumption that the startit
conditionw(0) is free, and the limitations (3) are lacking. =< 1t
Hence, if the optimal trajectory of the problem (3), (4),,(7)
(8) includes the singular arch arig satisfies the condition

(t) vs time withk = k on [0; 7] is shown in
Fig.3. As can be seen from the picture, the angular velocity

1.491

147

(3), then this arch adjoins the extremity of the trajectory. Laal
Substituting the auxiliary problem solutian¢) = 0 in (17),
we find the corresponding singular control vakie= 0. 143y
We cleared up the optimal control structure: the coefficier "™ ‘ ‘ ‘ ‘ ‘ ‘ ‘
k(t) of the proportional navigation law should be chosel froo e ne e e e e e

maximal in absolute value from the allowable cldss- &
till the angular velocityw decreases to zero, then follows the

. . ) Fig. 2. Rendezvous time vs switching point
switching to the singular modk = 0 till the reach of the



a spacecraft and a passive orbital station the guidance law
coefficient should be chosen variable: maximal in absolute
value till the moment when the LOS angular velocity reaches
zero (regular control) and equal to zero till the end of the

| (1]

1 (2]
| (3]

(4
(5]
(6]

Fig. 3. Relative angular velocity witk = &

-
w decreases to zero at= 0.325, that corresponds to the i

moment of switching tdk = 0 under the optimal control.
The system (1) withu, = ko(t—7) was also simulated with
the help of Matlab function 'dde23’, which allows to take
delay into account. The qualitative and quantitative aless
of trajectories with smalr was obtained. This fact confirms
our right to use the equation (6) for time delay.

(8]

Bl
(20]

VI. CONCLUSION

The problem of optimization of the proportional naviga;;
tion law with a constant time delay was considered. It was
shown that the time delay essentially effects on the charact'?
of optimal guidance. To minimize the rendezvous time of

process (singular control).
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