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1. INTRODUCTION

This paper is devoted to numerical algorithms of
anisotropy-based analysis and controller design
problems for finite-dimensional linear discrete
time-invariant control systems. The detailed for-
mulation and grounds for applied stochastic ap-
proach to H∞-optimization have been presented
by (Semyonov et al. 1994), (Vladimirov et al.
1995a), (Diamond et al. 2001).

The subject of the numerical methods of aniso-
tropic analysis includes algorithms for comput-
ing mean anisotropy and anisotropic norm.

For an open-loop automatic control system and
given external disturbance mean anisotropy level
a, the stochastic H∞-optimization problem con-
sists in finding internally stabilizing controller
that minimizes the a-anisotropic norm of the
closed-loop system transfer matrix.
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For finite-dimensional systems, the optimal con-
troller design problem using the anisotropic
norm as performance criterion reduces to solv-
ing algebraic equation system consisting of three
cross-coupled Riccati equations, Lyapunov equa-
tion and special-type nonlinear matrix equa-
tion (Vladimirov et al. 1996). This nonlinear
equation system smoothly depends on a scalar
parameter, and when it is equal to zero (that
corresponds to the zero level of mean anisotro-
py a = 0), reduces to two independent Riccati
equations determining H2-optimal controller.

For an arbitrary a > 0, the respective a-ani-
sotropic controller can be obtained from H2-
optimal one by smooth deformation or homotopy
described by differential equations.

2. BASIC CONCEPTS OF ANISOTROPIC
ANALYSIS

2.1 Mean anisotropy of Gaussian signal

Let V = (vk)−∞<k<+∞ be the discrete-time
m-dimensional Gaussian white noise with zero



mean and identity covariance matrix:

E (vk) = 0,E
(
vkv>j

)
= δkjIm,−∞ < k < +∞,

(1)
where δkj is the Kronecker delta. Consider m-
dimensional stationary Gaussian sequence

W = (wk)−∞<k<+∞ = G ∗ V,

generated from white noise V by a stable gen-
erating filter with impulse transient response
gk ∈ Rm×m , k > 0:

wj =
+∞∑

k=0

gk vj−k , −∞ < j < +∞. (2)

Such the filter is identified with its transfer ma-
trix G(z) =

∑+∞
k=0 gk zk, zvj = vj−1, belonging

to the Hardy space Hm×m
2 .

Define the mean anisotropy of the sequence W
as (Vladimirov et al. 1995a)

A(W ) .=

− 1
4π

π∫

−π

ln det
(

m

‖G‖22
Ĝ(ω)

(
Ĝ(ω)

)∗)
dω,

(3)

where Ĝ(ω) = limr→1−0 G(r ejω). Expression (3)
also is the formula for computing the mean ani-
sotropy of Gaussian stationary random sequence
in frequency domain. The sequence W is com-
pletely determined by its generating filter G,
therefore, along with the notation A(W ), the
equivalent notation A(G) can be used.

2.1.1. State-space formulas for mean anisotropy.
Let the generating filter G ∈ Hm×m

2 has n-
dimensional internal state X = (xk)−∞<k<+∞
relating the input V and output W by equations

xk+1 = Axk + Bvk

wk = Cxk + Dvk

}
, −∞ < k < +∞,

where A,B,C, D are the matrices of appropri-
ate dimensions, the matrix A is assumed to be
asymptotically stable, and the matrix D is non-
singular. Consider the Riccati equation in the
matrix R ∈ Rn×n

R = ARA> + BB> − LTL>, (4)

T = CRC> + DD>, (5)

L =
(
ARC> + BD>)

T−1 (6)

associated with the filter G. Equation (4)–(6)
has a unique stabilizing solution R = R> > 0
such that the matrix A − LC is asymptotically
stable (Shiryaev and Liptser 1977).

Theorem 1. (Diamond et al. 2001) Mean aniso-
tropy (3) of the sequence W = G ∗ V generated
by the filter G with the asymptotically stable

matrix A ∈ Rn×n and the nonsingular matrix
D ∈ Rm×m is given by formula

A(G) = −1
2

ln det
(

mT

tr (CPC> + DD>)

)
, (7)

where the matrix T is determined via the stabi-
lizing solution R of Riccati equation (4)–(6), and
the matrix P is the controllability grammian of
the filter G satisfying the Lyapunov equation

P = APA> + BB>. (8)

2.2 Computing mean anisotropy of random
sequence: function meananis

The numerical procedure for computing the
mean anisotropy of Gaussian random sequence
is implemented in Matlab environment as func-
tion meananis with the following syntax:

[a] = meananis(A,B,C,D)

that returns the numerical value of variable a
equal to the mean anisotropy of random se-
quence produced by the generating filter with
the state-space realization matrices A, B, C, D,
which are the input variables of the function.

The functions dare and dlyap of Matlab envi-
ronment are used for solving algebraic Riccati
equation (4)–(6) and Lyapunov equation (8),
respectively.

2.3 Anisotropic norm of linear system

Let F be the linear discrete time-invariant sys-
tem with input W and output Z = F ∗ W .
Assume that its transfer matrix belongs to the
Hardy space Hp×m

∞ .

For given a > 0 the a-anisotropic norm of the
system F is defined as

|||F |||a = sup
G∈Ga={G∈Hm×m

2 : A(G)6a}

{‖FG‖2
‖G‖2

}
.

(9)
Since, as it has been shown in paper (Diamond
et al. 2001),

1√
m
‖F‖2 = |||F |||0 6 lim

a→∞
|||F |||a = ‖F‖∞,

below we will consider the systems F satisfying
the inequality 1√

m
‖F‖2 < ‖F‖∞.

2.3.1. State-space formulas for anisotropic norm.
Let the system F ∈ Hp×m

∞ has the following
representation in state space

F ∼
[

A B
C D

]
. (10)



There A,B,C, D are the matrices of appropriate
dimentions with the asymptotically stable ma-
trix A.

Consider the following algebraic Riccati equation
in the matrix R ∈ Rn×n

R = A>RA + qC>C + L>Σ−1L, (11)

Σ = (Im − qD>D −B>RB)−1, (12)

L = Σ(B>RA + qD>C). (13)

Denote that for ∀q ∈ [0, ‖F‖−2
∞ ) Riccati equa-

tion (11)–(13) has a unique stabilizing solution
R = R> > 0 such that the matrix A + BL is
asymptotically stable and matrix Σ > 0.

Theorem 2. (Diamond et al. 2001) Let asymp-
totically stable system (10) and the input mean
anisotropy level a > 0 be given. Then there
exists a unique pair (q, R) of the parameter q ∈
(0, ‖F‖−2

∞ ) and stabilizing solution R of Riccati
equation (11)–(13) such that

−1
2

ln det
(

m Σ
tr (LPL> + Σ)

)
= a, (14)

where P is the controllability grammian of the
filter

G ∼
[

A + BL BΣ1/2

L Σ1/2

]
, (15)

determined by the Lyapunov equation

P = (A + BL)P (A + BL)> + BΣB>. (16)

At that, filter (15) is the worst-case generating
filter, and a-anisotropic norm (9) of the system
F is given by

|||F |||a =
(

1
q

(
1− m

tr (LPL> + Σ)

))1/2

. (17)

2.3.2. Computing anisotropic norm by homotopy
method with Newton’s iterations

Lemma 1. For given asymptotically stable sys-
tem (10), the stabilizing solution of Riccati equa-
tion (11)–(13) and accompanying matrices (12),
(13), (16) are analytic in q ∈ [

0, ‖F‖−2
∞

)
and

satisfy the differential equations

Ṙ = (A + BL)>Ṙ (A + BL)

+ (C + DL)>(C + DL), (18)

Ṗ = (A + BL)Ṗ (A + BL)>

+ BL̇P (A + BL)>

+ (A + BL)PL̇>B> + BΣ̇B>,

L̇ = Σ(B>Ṙ (A + BL) + D>(C + DL))(19)

Σ̇ = Σ(D>D + B>ṘB)Σ. (20)

Define the functions

A : [0, ‖F‖−2
∞ ) → R+,

N : [0, ‖F‖−2
∞ ) → [m−1/2‖F‖2, ‖F‖∞)

by the left and right parts of (14) and (17),
respectively:

A(q) =−1
2

ln det
(

mΣ
tr (LPL> + Σ)

)
,

N (q) =
(

1
q

(
1− m

tr (LPL> + Σ)

))1/2

.

Restating Theorem 2, we have the following
expression for the a-anisotropic norm of the
system F

|||F |||a = N (A−1(a)
)
. (21)

Since the function A is strictly increasing and
convex, the a-anisotropic norm can be computed
by formula (21) via Newton’s iterations whose
convergence is provided by strict monotonicity
and convexity of the function A.

2.4 Computing anisotropic norm of linear discrete
time-invariant system: function aninorm

The computational algorithm for the anisotropic
norm using Newton’s iterations is implemented
in function aninorm:

[anorm] = aninorm(A,B,C,D,a).

This function returns the numeric value of vari-
able anorm equal to the anisotropic norm of the
system with the state-space realization matrices
A, B, C, D given the mean anisotropy level a of
the input Gaussian random sequence.

Functions dare and dlyap of Matlab environ-
ment are used for solving Riccati equation (11)–
(13) and Lyapunov equation (16), respectively.
For solving equations (18)–(20) with respect to
the derivatives Ṙ, Ṗ , L̇, and Σ̇, function dlyap is
called.

Computing H2- and H∞-norm of the system is
implemented by functions h2norm and hinfnorm,
respectively:

[norm] = h2norm(A,B,C,D),
[norm] = hinfnorm(A,B,C,D).

The function norminf calls function varsvd1
with syntax

[Z] = varsvd1(X,Y)

that returns r-dimensional column vector Z of
the first-order directional derivatives

Z =




∂σ1(X + aY )

∂a
..
.

∂σr(X + aY )

∂a




a=0



of the ordered set of singular values σ1 > . . . >
σr of the matrix X with respect to the matrix Y,
where r is the minimum dimension of X, as well
as function varsvd2:

[W] = varsvd2(X,Y,Z).

The latter returns in variable W r-dimensional
column vector of the second-order directional
derivatives

W =




∂ 2σ1(X + aY + bZ)

∂a∂b
.
..

∂ 2σr(X + aY + bZ)

∂a∂b




a,b=0

of the ordered set of singular values σ1 > . . . >
σr of the matrix X with respect to the matrices
Y and Z, where r is the minimum dimension
of the matrix X. The functions varsvd1 and
varsvd2 use the standard Matlab function svd
for computing singular value decomposition of
the matrix X.

3. ALGORITHMS FOR
ANISOTROPY-BASED CONTROLLER

DESIGN

3.1 Optimal control minimizing anisotropic norm

Consider linear discrete time-invariant system
F with two inputs: m1-dimensional disturbance
W and m2-dimentional control U ; and two out-
puts: p1-dimensional controlled signal Z and p2-
dimensional observation Y . The system F has
the block structure

F =
[

F11 F12

F21 F22

]
. (22)

With the feedback U = K ∗ Y, the closed-loop
system transfer matrix from W to Z is given by

L(F, K) = F11 + F12K (Ip2 − F22K)−1
F21.

(23)
Let the disturbance W = G ∗ V be the sta-
tionary Gaussian sequence produced from m1-
dimensional Gaussian white noise V by unknown
generating filter G in the family

Ga =
{
G ∈ H2

m1×m1 : A(G) 6 a
}

(24)

The controller K is called to be admissible if it
is strictly causal and internally stabilizes closed-
loop system (23).

Denoting K the set of admissible controllers for
given system (22), let us formulate the stochas-
tic H∞-optimization problem (Vladimirov et al.
1995b), (Vladimirov et al. 1996): given the mean
anisotropy level a > 0, find a controller K ∈ K

minimizing the a-anisotropic norm of closed-loop
system (23):

|||L(F,K)|||a =

sup
∀G∈Ga

‖L(F, K)G‖2
‖G‖2 ↘ inf

∀K∈K
. (25)

3.1.1. State-space equations for optimal con-
troller. Let the system F has the following
state-space realization

F ∼



A B1 B2

C1 D11 D12

C2 D21 0


 (26)

where A, Ci, Bj , Dij are the matrices of appro-
priate dimensions.

Below we consider equations for solving stated
stochastic H∞-optimization problem (25). At
that, we use standard assumptions in respect
of relations between dimensions of the system
input and output, the subsystem matrices rank
fullness, and on stabilizability and detectability
of the system.

Let K be the admissible controller with n-
dimensional internal state H relating observa-
tion Y and control U by equations

hk+1 = Âhk + B̂yk

uk = Ĉhk

}
,

−∞ < k < +∞, (27)

where Â, B̂, Ĉ are the matrices of appropriate
dimensions. Then for closed-loop system (23)

L(F, K) ∼
[

A B

C D11

]
=




A B2Ĉ B1

B̂C2 Â B̂D21

C1 D12Ĉ D11


 ,

(28)
where the matrix A is asymptotically stable.
Associate with system (28) algebraic Riccati
equation in the matrix R ∈ R2n×2n

R = A
>

RA + qC
>

C + L>Σ−1L, (29)

Σ = (Im1 − qD>
11D11 −B

>
RB)−1, (30)

L =
[
L1 L2

]
= Σ(B

>
RA + qD>

11C), (31)

where 0 6 q < ‖L(F, K)‖−2
∞ and the ma-

trix L is partitioned into the blocks L1, L2 ∈
Rm1×n. Whatever admissible controller (27), for
∀q ∈ [

0, ‖L(F, K)‖−2
∞

)
equation (29)–(31) has a

unique stabilizing solution R = R> > 0 such
that the matrix A + BL is asymptotically stable
and matrix Σ > 0.

Theorem 3. (Vladimirov et al. 1996) Let sys-
tem (26) satisfy the standard assumptions men-
tioned before. Then for any admissible con-
troller (27) and any mean anisotropy level a > 0
there exists a unique pair of the parameter q



∈ (0, ‖L(F,K)‖−2
∞ ) and stabilizing solution R of

Riccati equation (29)–(31) such that

−1
2

ln det
(

m1 Σ
tr (LPL> + Σ)

)
= a, (32)

where P ∈ R2n×2n is the controllability gram-
mian of the generating filter

G ∼
[

A + BL BΣ1/2

L Σ1/2

]

=




A + B1L1 B1L2 + B2Ĉ B1Σ1/2

B̂ (C2 + D21L1) Â + B̂D21L2 B̂D21Σ
1/2

L1 L2 Σ1/2


 ,

(33)

determined by the Lyapunov equation

P = (A + BL)P (A + BL)> + BΣB
>

. (34)

This filter is the worst-case input generating
filter for closed-loop system (28), moreover,

|||L(F,K)|||a =
(

1
q

(
1− m1

tr(LPL> + Σ)

))1/2

.

(35)

Consider the algebraic Riccati equation in the
matrix S ∈ Rn×n

S = (A + B1L1)S(A + B1L1)>

+ B1ΣB>
1 − ΛΘΛ>, (36)

Θ = (C2 + D21L1)S(C2 + D21L1)>

+ D21ΣD>
21, (37)

Λ = ((A + B1L1)S(C2 + D21L1)>

+ B1ΣD>
21)Θ

−1 (38)

(here the matrices Σ and L are defined in The-
orem 3). Denote that equation (36)–(38) has no
more than one stabilizing solution S = S> > 0
such that the matrix A+B1L1−Λ(C2 +D21L1)
is asymptotically stable.

Finally, consider the Riccati equation in the
matrix T ∈ R2n×2n

T = A>TA + C>C −N>ΠN , (39)

Π = B>TB + D>
12D12 , (40)

N =−Π−1(B>TA + D>
12C) (41)

where the matrix N =
[
N1 N2

]
is partitioned

into the blocks N1, N2 ∈ Rm2×n, and the matri-
ces A ∈ R2n×2n, B ∈ R2n×m2 , and C ∈ Rp1×2n

are given by
[

A B
C ∗

]
=

[
A B1M B2

0 A + B1M + B2Ĉ 0

C1 D11M ∗

]
, (42)

and M = L1 + L2 is the sum of the blocks of
matrix (31). Equation (39)–(41) has a unique
stabilizing solution T = T> > 0 such that the
matrix A + BN is asymptotically stable.

Theorem 4. (Vladimirov et al. 1996) Let sys-
tem (26) satisfy the standard assumptions, and
let the state-space realization matrices of admis-
sible controller (27) be given by

Â = B2Ĉ +
[
In −Λ

] [
A B1

C2 D21

] [
In

M

]
, (43)

B̂ = Λ , (44)

Ĉ = N1 + N2, (45)

where the matrices N1, N2 are determined by
the stabilizing solution of Riccati equation (39)–
(41). Then such the controller is the solution of
problem (25).

Theorems 3 and 4 give the complete equation
system for the optimal controller state-space re-
alization matrices in problem (26). This system
consists of three algebraic Riccati equations (two
(2n×2n)-dimensional equations (29)–(31), (39)–
(41), and (n × n)-dimensional equation (36)–
(38)), Lyapunov equation (34), special-type non-
linear matrix algebraic equation (32), as well as
relations (43)–(45), (28), and (42).

3.2 Numerical solution of optimal anisotropic
controller design problem: function anicont

The computational homotopy-based algorithm
with Newton’s iterations for solving the optimal
anisotropic controller design problem is imple-
mented in function anicont. Syntax for calling
this function is as follows

[hatA,hatB,hatC,N]
= anicont(A,B1,B2,C1,C2,D11,D12,D21,a).

The function anicont returns the optimal ani-
sotropic controller matrices Â, B̂, Ĉ in variables
hatA, hatB, and hatC, respectively, together with
the value of the anisotropic norm of system with
the state-space realization matrices, correspond-
ing to the input variables A, B1, B2, 1, 2, D11,
D12, and D21, closed by the anisotropic controller
for given disturbance mean anisotropy level a.

The H2-optimal controller being the initial point
of homotopy-based algorithm with q = 0 is
computed by function h2cont with call syntax

[hatA,hatB,hatC,norm]
= h2cont(A,B1,B2,C1,C2,D11,D12,D21).

The function returns the matrices Â, B̂, Ĉ of
H2-optimal controller as well as the value of H2-
norm of the system with the realization matrices
A, B1, B2, 1, 2, D11, D12, and D21 closed by H2-
optimal controller. For solving Riccati equations
determining the controller matrices, the function
h2cont calls the standard function dare. The



function h2norm is called for computingH2-norm
of the closed-loop system.

In computations of matrix-valued mappings in
homotopy method, the function tocol is used:

[Y] = tocol(A,B,C).

It returns vectorized matrices A, B, and C. For
vectorizing each of the matrices, the function
tocol, in turn, calls function mat2col with syn-
tax

[X] = mat2col(Z),

returning the column vector with dimension p q
constituted by sequentially written columns of
the (p× q)-dimensional matrix Z.

Recovery of the matrix A, B, and C with dimen-
sions n×n, n×m, and p×n, respectively, from
their vectorized representation Y is implemented
in function tomat:

[A,B,C] = tomat(n,m,p,Y),

which, in turn, use the function

[X] = col2mat(p,q,Z)

that returns (p×q)-matrix X such that its sequen-
tially written columns form the column vector Z.

The matrices of the system closed by the con-
troller are formed by function

[Acl,Bcl,Ccl,Dcl]
= loop(A,B1,B2,C1,C2,D11,D12,D21,...
hatA,hatB,hatC).

Function ric1 is used for solving Riccati equa-
tion (29)–(31) and computing derivatives of the
matrices Σ and L with respect to the parameter
q and the controller matrices Â, B̂ Ĉ. It has
syntax

[Sigma,L,dSigma,dL] = ric1(q,A,B,C,D),

and calls the standard function dare for solving
the Riccati equation.

The function dlyap of Matlab environment
is called for solving Lyapunov equation (34).
H2- and H∞-norms are computed by functions
h2norm and hinfnorm, respectively (see subsec-
tion 2.4).

Computational algorithm for solving algebraic
Riccati equation (36)–(38) and computing the
derivative of the matrix Λ with respect to the
matrices Σ and L1 is implemented in function
ric2:

[Lambda,dLambda]
= ric2(A,B1,C2,D21,Sigma,L1),

which calls function estric:

[L,dL] = estric(A,B,C,D)

for solving Riccati equation and computing the
derivative. The function estric, in turn, calls
the standard function dare. Finally, function
ric3 solves Riccati equation (39)–(41) and com-
putes the derivative of the matrix N with respect
to the matrices A and C. It has call syntax

[N,dN] = ric3(A,B,C,D)

and also use the function estric.

4. CONCLUSION

This paper makes a brief mention of algo-
rithms and Matlab software tools for solving
anisotropy-based performance analysis and opti-
mal controller design problems. Some numerical
examples with computations made using these
software tools can be found, e.g., in papers (Dia-
mond et al. 2001), (Kurdyukov et al. 2004). The
presented software package is freely available for
download at www.apkurdukov.narod.ru.
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