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Abstract
We consider the problem of stability of the motion of

an deformable plate which is a part of the border divid-
ing the areas filled with viscous incompressible fluid.
Two models of a deformable solid are considered. The
first (nonlinear) model of an elastic body takes into ac-
count the longitudinal and transverse deformation of
the plate, but does not take into account its aging. The
second (linear) model of a viscoelastic body takes into
account the aging of the plate, but does not take into ac-
count longitudinal deformation. The stability research
method is based on creation of a functional of Lya-
punov type for the partial differential equations which
satisfy aerohydrodynamic functions and deformations
of plate. Sufficient stability conditions of the motion of
an elastic plate imposing restrictions for parameters of
mechanical system are received.
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1 Introduction
At the design and exploitation of structures, devices,

mechanisms for various applications, interacting with
a fluid, an important problem is to ensure the reliabil-
ity of their functionality and longer life. Similar prob-
lems are common to many branches of engineering.
In particular, such problems arise in missilery, aircraft
construction, instrumentation, and so on. The essen-
tial value in the calculation of structures that interact
with the fluid has a stability study of the deformable
elements, as the impact of the fluid may lead to its loss.
Thus, at designing of the structures and devices inter-

acting with the fluid, it is necessary to solve problems
related to the investigation of stability required for their
functioning and operational reliability.

High number of theoretical and experimental stud-
ies deal with the stability of elastic bodies interacting
with gas and fluid. Among them should be noted the
studies [Ageev, Kuznetsova, Kulikov, Mogilevich and
Popov, 2014; Kheiri and Paidoussis, 2015; Kontzialis,
Moditis and Paidoussis, 2017; Moditis, Paidoussis
and Ratigan, 2016; Mogilevich, Popov, Popova and
Christoforova, 2016; Mogilevich, Popov, Rabinsky and
Kuznetsova, 2016; Naumova, Ivanov, Voloshinova and
Ershov, 2015; Sokolov and Razov, 2014; Zvyagin and
Gur’ev, 2017] and many others. Among the works of
the authors of this article about fluid-structure interac-
tion, note the monographs and articles [Ankilov and
Velmisov, 2013, 2015, 2016; Velmisov, Ankilov and
Semenova, 2016].

The definition of stability of an elastic body used in
this work corresponds to the Lyapunov concept of sta-
bility of dynamical systems. The problem can be for-
mulated as follows: for any values of the parameters
characterizing the system fluid-solid to the small de-
formations of bodies at the initial time t = 0 (i.e., a
small initial deviations from the equilibrium position)
will correspond to small deformations and at any time
t > 0.

2 Mathematical Model

We investigate stability of the motion (by Lyapunov)
of an elastic plate which is a part (x = a, y0 < y <
y∗) of the border L0 dividing two areas S1 and S2,
filled with viscous incompressible fluid. Areas S1, S2

have borders L1, L2 and L0 of any form (for example,
Fig.1).

We introduce the notations: u(y, t) and w(y, t), y ∈
(y0, y∗) are deformations of an elastic plate in the di-
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rection of axes of Oy and Ox respectively;

v1(x, y, t) =

{
v11(x, y, t), (x, y) ∈ S1,

v12(x, y, t), (x, y) ∈ S2,

v2(x, y, t) =

{
v21(x, y, t), (x, y) ∈ S1,

v22(x, y, t), (x, y) ∈ S2

are fluid velocity vector projections;

P (x, y, t) =

{
P1(x, y, t), (x, y) ∈ S1,

P2(x, y, t), (x, y) ∈ S2

is pressure in fluid.

Figure 1. Example of the areas S1, S2

Function w(y, t) ∈ C4,2 {[y0, y∗]×R+}, i.e. it be-
longs to four times continuously differentiable func-
tions with respect to the variable y on the interval
(y0, y∗) and twice continuously differentiable with re-
spect to the variable t at t ≥ 0 and takes real values.
Function u(y, t) ∈ C2,2 {[y0, y∗]×R+}, i.e. it be-

longs to twice continuously differentiable functions
with respect to the variable y on the interval (y0, y∗)
and twice continuously differentiable with respect to
the variable t at t ≥ 0 and takes real values.
Functions v1i(x, y, t), v2i(x, y, t), Pi(x, y, t) ∈
C2,1 {Si ×R+}, i.e. it belongs to twice continuously
differentiable functions with respect to the variables
x, y in the area Si and continuously differentiable with
respect to the variable t at t ≥ 0 and takes real values.
In the model of the viscous incompressible medium

we write the equations describing the motion of the
fluid in the fields S1, S2:

ρ(v1t + v1v1x + v2v1y) = µ(v1xx + v1yy)−

−Px, (x, y) ∈ S1

∪
S2;

(1)

ρ(v2t + v1v2x + v2v2y) = µ(v2xx + v2yy)−

−Py, (x, y) ∈ S1

∪
S2;

(2)

v1x + v2y = 0, (x, y) ∈ S1

∪
S2 . (3)

We introduce the conditions for the sticking of a vis-
cous fluid:

v1(Lk) = v2(Lk) = 0, k = 1, 2; (4)

v1 (L0\(y0, y∗)) = v2 (L0\(y0, y∗)) = 0; (5)

v1(a, y, t) = ẇ(y, t), v2(a, y, t) = 0,

y ∈ (y0, y∗).
(6)

Consider two models of the deformable solid – the
two-stage nonlinear model of a elastic body (7), taking
into account the longitudinal and transverse deforma-
tion of the plate, but not taking into account its aging,
and the single-stage linear model of a viscoelastic body
(8), taking into account the aging of the plates, but not
taking into account longitudinal deformation:
1) first model



−EF
(
u′(y, t)+ 1

2w
′2(y, t)

)′
+Mü(y, t)= 0,

−EF
[
w′(y, t)

(
u′(y, t) + 1

2w
′2(y, t)

)]′
+

+Dw′′′′(y, t) +Mẅ(y, t) +N(t)w′′(y, t)+

+β2ẇ
′′′′(y, t) + β1ẇ(y, t) + β0w(y, t) =

= P1(a, y, t)− P2(a, y, t), y ∈ (y0, y∗);

(7)

2) second model

D

[
w′′(y, t)−

∫ t

0

∂Q1(y, τ, t)

∂τ
w′′(y, τ)dτ

]′′
+

+Mẅ(y, t)+N(t)w′′(y, t)+β2ẇ
′′′′(y, t)+β1ẇ(y, t)+

+β0

[
w(y, t)−

∫ t

0

∂Q2(y, τ, t)

∂τ
w(y, τ)dτ

]
=

= P1(a, y, t)− P2(a, y, t), y ∈ (y0, y∗). (8)

The indices x, y, t below denote partial derivatives with
respect to x, y, t; the bar and the point denote the partial
derivatives with respect to y and t, respectively; ρ, µ
are density and dynamic coefficient of viscosity of the
fluid;D = Eh3/(12(1−ν2)) is flexural stiffness of the
element; h is the thickness of the plate; M = hρp is the
linear mass of the plate; F = h/(1−ν2); E, ρp are elas-
ticity modulus and the linear density of the plate; ν is
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the Poisson coefficient; N(t) is compressing (N > 0)
or tensile (N < 0) forces of the plate; β2, β1 are coef-
ficients of internal and external damping; β0 is stiffness
coefficient of the base (bed); Q1(y, τ, t), Q2(y, τ, t) –
measures of relaxation of the plate and base materials.
Compressive (tensile) force N(t) element may de-

pend on time. For example, if a non-stationary heat
exposure to the plate the N(t) is as follows:

N (t) = N0 +NT (t),

NT (t) = −T0(t)

1− ν
, T0(t) = EαT

h/2∫
−h/2

T (z, t) dz,

where αT is the temperature coefficient of the linear ex-
pansion, T (z, t) is the law of temperature change over
the thickness of the plate,N0 is the constant component
of the force generated when fixing the plate.
The equations (1)-(3) describe the motion of the fluid

in areas S1, S2, the equation (7) describes the dynamic
of a plate; conditions (4)-(6) are conditions of sticking
of the viscous fluid.
For a two-stage model of an elastic body the boundary

conditions at the ends of the plate at y = y0 and y = y∗
can take the form:
1) rigid clamping (Fig. 2a):

w(y, t) = w′(y, t) = u(y, t) = 0; (9)

2) hinge securely fastened (Fig. 2b):

w(y, t) = w′′(y, t) = u(y, t) = 0; (10)

3) rigid mobile jamming (Fig. 2c):

w(y, t) = w′(y, t) = u′(y, t) = 0; (11)

4) hinged movable anchorage (Fig. 2d):

w(y, t) = w′′(y, t) =

= u′(y, t) + 1
2w

′2(y, t) = 0.
(12)

a) b) c) d)

Figure 2. The method of fixing.

For single-stage model of an elastic body the bound-
ary conditions at the ends of the plate at y = y0 and
y = y∗ can take the form:
1) rigid fastened:

w(y, t) = w′(y, t) = 0; (13)

2) hinge fastened:

w(y, t) = w′′(y, t) = u(y, t) = 0. (14)

We will notice that for the description of the move-
ment of the fluid the nonlinear equations of Navier-
Stokes are used, and boundary conditions (6), as well
as the right part of the equation (7), are written down in
the assumption that deformations of the plate are small.
Given the initial conditions:

w(y, 0) = f1(y), ẇ(y, 0) = f2(y),

u(y, 0) = f3(y), u̇(y, 0) = f4(y),
(15)

which must agree with the boundary conditions (9)-
(12). According to the definitions of the func-
tions w(y, t),u(y, t): f1(y), f2(y) ∈ C4[y0, y∗],
f3(y), f4(y) ∈ ∈ C2[y0, y∗]. The norms in the spaces
C4[y0, y∗] and C2[y0, y∗] are defined by the equalities

∥fi(y)∥ = sup
0≤m≤4

max
y∈[y0,y∗]

∣∣∣∣dmfi(y)dym

∣∣∣∣ , i = 1, 2,

∥fi(y)∥ = sup
0≤m≤2

max
y∈[y0,y∗]

∣∣∣∣dmfi(y)dym

∣∣∣∣ , i = 3, 4.

Given also initial conditions:

v1(x, y, 0) = f5(x, y), v2(x, y, 0) = f6(x, y), (16)

which must agree with the boundary conditions (4),
(5) and (6). According to the definition of the func-
tions v1(x, y, t), v2(x, y, t): f5(x, y), f6(x, y) ∈
∈ C2{S1

∪
S2}. The norm in the space C2 {G} is de-

fined by the equality

∥fi∥ = sup
0≤n+m≤2

max
(x,y)∈S1

∪
S2

∣∣∣∣∂m+nfi(x, y)

∂xn∂ym

∣∣∣∣ ,
i = 5, 6.
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3 Stability Investigation
3.1 Stability Investigation for the Two-stage

Model of an Elastic Body
Definition 3.1. The solution of the problem

(1)–(7), (9)–(12) for five unknown functions
u(y, t) ∈ C2,2 {[y0, y∗]×R+}, w(y, t) ∈
C4,2 {[y0, y∗]×R+}, v1(x, y, t), v2(x, y, t),
P (x, y, t) ∈ C2,2 {S1

∪
S2 ×R+} is called sta-

ble with respect to perturbations of the initial data
(15), (16), if for any arbitrarily small positive number
δ > 0 there exists a number ε = ε(δ) > 0, such
that for any functions f1(y), f2(y) ∈ C4[y0, y∗],
f3(y), f4(y) ∈ C2[y0, y∗] and f5(x, y), f6(x, y) ∈
C2{S1

∪
S2}, satisfying the boundary conditions

and the conditions of the smallness by the norm
∥f1(y)∥ < ε, ∥f2(y)∥ < ε,∥f3(y)∥ < ε, ∥f4(y)∥ <
ε, ∥f5(x, y)∥ < ε, ∥f6(x, y)∥ < ε, the inequalities
|w(y, t)| < δ, |u(y, t)| < δ, y ∈ [y0, y∗] and
|v1(x, y, t)| < δ, |v2(x, y, t)| < δ, |P (x, y, t)| < δ,
(x, y) ∈ S1

∪
S2 will hold for any time t > 0.

The similar definitions of stability with respect to per-
turbations of the initial data can be given separately for
the functions themselves u(y, t), w(y, t), v1(x, y, t),
v2(x, y, t), P (x, y, t) and its partial derivatives.
We introduce the followig notations: λ1, η1 are the

smallest eigenvalues of the boundary value problems
for the equations ψ′′′′ = −λψ′′, ψ′′′′ = ηψ, y ∈
(y0, y∗) with boundary conditions corresponding (9)-
(12).

Theorem 3.1. Let the conditions

β2η1 + β1 ≥ 0, Ṅ(t) > 0, (17)

N(t) < λ1D. (18)

Then the solution w(y, t),v1(x, y, t), v2(x, y, t)
of the problem (1)–(7), (9)–(12) and the
derivatives u̇(y, t), ẇ(y, t) are stable with
respect to perturbations of the initial data
v1(x, y, 0), v2(x, y, 0), u̇(y, 0), u′(y, 0),
ẇ(y, 0), w′(y, 0), w′′(y, 0).

Proof. We will write down the equations (1), (2) as

ρ(v1t + v2v1y − v2v2x) = −
(
P + 1

2ρV
2
)
x
+

+µ∆v1,
(19)

ρ(v2t + v1v2x − v1v1y) = −
(
P + 1

2ρV
2
)
y
+

+µ∆v2,
(20)

where V 2 = v21+v
2
2 is fluid velocity square, ∆ is lapla-

cian.

Multiplying the equation (19) by v1(x, y, t), the equa-
tion (20) on v2(x, y, t), and summing the obtained ex-
pressions, accounting for the equation of continuity (3),
we will obtain(

1

2
ρV 2

)
t

= −
[
v1

(
P +

1

2
ρV 2

)]
x

−

−
[
v2

(
P +

1

2
ρV 2

)]
y

+ µ [(v1v1x + v2v2x)x+

+(v1v1y + v2v2y)y − v21x − v21y − v22x − v22y
]
. (21)

Considering the boundary conditions (9)-(12), we will
obtain equalities

−
y∗∫

y0

ẇ

[
w′
(
u′+

1

2
w′2
)]′

dy−
y∗∫

y0

u̇

(
u′+

1

2
w′2
)′

dy =

=

y∗∫
y0

ẇ′w′
(
u′+

1

2
w′2
)
dy +

y∗∫
y0

u̇′
(
u′+

1

2
w′2
)
dy =

=
1

2

 y∗∫
y0

(
u′ +

1

2
w′2
)2

dy


t

, (22)

y∗∫
y0

ẇẅdy =
1

2

 y∗∫
y0

ẇ2dy


t

,

y∗∫
y0

u̇üdy =
1

2

 y∗∫
y0

u̇2dy


t

,

y∗∫
y0

ẇw′′′′dy =

y∗∫
y0

ẇ′′w′′dy =
1

2

 y∗∫
y0

w′′2dy


t

,

N(t)

y∗∫
y0

ẇw′′dy = −N(t)

y∗∫
y0

ẇ′w′dy =

= −1

2

N(t)

y∗∫
y0

w′2dy


t

+
1

2
Ṅ(t)

y∗∫
y0

w′2dy,

y∗∫
y0

ẇẇ′′′′dy =

y∗∫
y0

ẇ′′2dy.

Multiplying the first equation of the system (7) by
u̇(y, t), the second equation of system (7) by ẇ(y, t),
and summing the received expressions and integrating
from y0 to y∗, accounting for the equalities (22), we
will obtain1

2

y∗∫
y0

(
EF

(
u′(y, t) +

1

2
w′2(y, t)

)2

+
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+M(u̇2(y, t) + ẇ2(y, t)) +Dw′′2(y, t)−

−N(t)w′2(y, t) + β0w
2(y, t)

)
dy

)
t

=

= −
y∗∫

y0

(
β2ẇ

′′2(y, t)+ β1ẇ
2(y, t) +

1

2
Ṅ(t)w′2(y, t)−

− (P1(a, y, t)− P2(a, y, t)) ẇ(y, t)

)
dy. (23)

Now we consider the following functional

J(t) =
1

2

∫∫
S

ρV 2(x, y, t)dS+

+
1

2

y∗∫
y0

(
EF

(
u′(y, t) +

1

2
w′2(y, t)

)2

+

+M
(
u̇2(y, t) + ẇ2(y, t)

)
+Dw′′2(y, t)− (24)

−N(t)w′2(y, t) + β0w
2(y, t)

)
dy,

where S = S1

∪
S2.

For the time-derivative ∂J
∂t

of this functional, using
expressions (21), (23) and applying the Green’s for-
mula, we find

∂J

∂t
=

∮
L1∪L0

[
−v11

(
P1 +

1

2
ρV 2

1

)
+ µ(v11v11x+

+v21v21x)

]
dy +

[
v21

(
P1 +

1

2
ρV 2

1

)
− µ(v11v11y+

+v21v21y)

]
dx+

∮
L2∪L0

[
−v12

(
P2 +

1

2
ρV 2

2

)
+

+µ(v12v12x + v22v22x)

]
dy +

[
v22

(
P2 +

1

2
ρV 2

2

)
−

−µ(v12v12y + v22v22y)

]
dx− µ

∫∫
S

(
v21x + v21y+

+v22x + v22y
)
dS −

y∗∫
y0

(
β2ẇ

′′2(y, t) +

+β1ẇ
2(y, t) +

1

2
Ṅ(t)w′2(y, t)−

− (P1(a, y, t)− P2(a, y, t)) ẇ(y, t)) dy. (25)

Considering the boundary conditions (4)-(6) and the
equations (7), we have

∂J

∂t
=

y∗∫
y0

[
−v11

(
P1 +

1

2
ρv211

)]
dy+

+

y0∫
y∗

[
−v12

(
P2 +

1

2
ρv212

)]
dy − µ

∫∫
S

(
v21x+

+v21y + v22x + v22y
)
dS −

y∗∫
y0

(
β2ẇ

′′2(y, t) + (26)

+β1ẇ
2(y, t) +

1

2
Ṅ(t)w′2(y, t)− (P1(a, y, t)−

−P2(a, y, t)) ẇ(y, t)) dy = −
y∗∫

y0

(
β2ẇ

′′2(y, t)+

+β1ẇ
2(y, t) +

1

2
Ṅ(t)w′2(y, t)

)
dy−

−µ
∫∫
S

(
v21x + v21y + v22x + v22y

)
dS.

Consider the boundary value problems for the equa-
tions ψ′′′′ = −λψ′′, ψ′′′′ = ηψ, y ∈ (y0, y∗) with
boundary conditions (9)–(12) for the function w(y, t).
These problems are self-adjoint and completely de-
fined. For the function w(y, t), using Rayleigh’s in-
equality [Kollatz, 1968], we obtain the estimates

y∗∫
y0

w(y, t)w′′′′(y, t)dy ≥−λ1

y∗∫
y0

w(y, t)w′′(y, t)dy,

y∗∫
y0

w(y, t)w′′′′(y, t)dy ≥ η1

y∗∫
y0

w(y, t)w(y, t)dy.

Integrating by parts and taking into account boundary
conditions (9)-(12), we will obtain inequalities

y∗∫
y0

w′′2(y, t)dy ≥ λ1

y∗∫
y0

w′2(y, t)dy,

y∗∫
y0

w′′2(y, t)dy ≥ η1

y∗∫
y0

w2(y, t)dy.

(27)

Similarly, considering the boundary value problems
for the equation ψ′′′′ = −λψ′′, y ∈ (y0, y∗) with
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boundary conditions (9)-(12) for the function ẇ(y, t)
we obtain the estimate∫ y∗

y0

ẇ′′2(y, t)dy ≥ η1

∫ y∗

y0

ẇ2(y, t)dy. (28)

Using the inequality (28) and (26), we obtain

∂J

∂t
≤ −µ

∫∫
S

(
v21x + v21y + v22x + v22y

)
dS− (29)

−
y∗∫

y0

(
(β2η1 + β1)ẇ

2(y, t)− 1

2
Ṅ(t)w′2(y, t)

)
dy.

Under conditions (15) from (29) it follows, that
∂J
∂t

≤ 0. Integrating from 0 to t, we obtain the inequal-
ity

J(t) ≤ J(0). (30)

We make the evaluations of the functional with the
boundary conditions (9)-(12). Using the inequalities
(27), we obtain the upper bound on J(0):

J(0) =
1

2

∫∫
S

ρ
(
v210 + v220

)
dS+

+
1

2

y∗∫
y0

(
M(u̇20 + ẇ2

0

)
+ EF

(
u′0 +

1

2
w′

0
2
)2

+ (31)

+

(
D +

|N(0)|
λ1

+
β0
η1

)
w′′

0
2
)
dy.

Here are introduced the notations v10 = v1(x, y, 0),
v20 = v2(x, y, 0), u̇0 = u̇(x, 0), u′0 = u′(x, 0), ẇ0 =
ẇ(x, 0), w′

0 = w′(x, 0), w′′
0 = w′′(x, 0).

Using the first inequality (27), we obtain the lower
bound for J(t):

J(t) ≥ 1

2

∫∫
S

ρV 2dS +
1

2

y∗∫
y0

(
M(u̇2(y, t)+

+ẇ2(y, t)) + (λ1D −N(t))w′2(y, t)
)
dy. (32)

Using the Cauchy-Bunyakovsky inequality at the
boundary conditions (9)-(12), we obtain the estimate

w2(y, t) ≤ (y∗ − y0)

y∗∫
y0

w′2(y, t)dy. (33)

Under conditions (18) the inequality (32) takes the
form

J(t) ≥ 1

2

∫∫
S

ρ
(
v21 + v22

)
dS +

1

2

y∗∫
y0

M(u̇2(y, t)+

+ẇ2(y, t))dy +
λ1D −N(t)

2(y∗ − y0)
w2(y, t). (34)

Thus, taking into account (30), (31), (34), we obtain
the inequality

∫∫
S

ρ
(
v21 + v22

)
dS +

y∗∫
y0

M(u̇2(y, t) + ẇ2(y, t))dy+

+
λ1D −N(t)

y∗ − y0
w2(y, t) ≤

∫∫
S

ρ
(
v210 + v220

)
dS+

+

y∗∫
y0

(
M(u̇20 + ẇ2

0) + EF

(
u′0 +

1

2
w′

0
2
)2

+

+

(
D +

|N(0)|
λ1

+
β0
µ1

)
w′′

0
2
)
dy. (35)

From inequalities ∥fi(y)∥<ε, i = 1, 4, ∥fi(x, y)∥ <
< ε, i = 5, 6 it follows that |v10| < ε, |v20| < ε,
|u̇0| < ε, |u′0| < ε, |ẇ0| < ε, |w′

0| < ε, |w′′
0 | < ε.

And as u(y, t) ∈ C2,2 {[y0, y∗]×R+}, w(y, t) ∈
C4,2 {[y0, y∗]×R+}, v1(x, y, t), v2(x, y, t) ∈
C2,2 {S1

∪
S2 ×R+}, then (35) implies, that for

any arbitrarily small positive number δ > 0 there
exists a number ε = ε(δ) > 0, such that the inequal-
ities |w(y, t)| < δ, |ẇ(y, t)| < δ, |u̇(y, t)| < δ,
y ∈ [y0, y∗] and |v1(x, y, t)| < δ, |v2(x, y, t)| < δ,
(x, y) ∈ S1

∪
S2 will hold for any time t > 0. Hence,

according to Definition 3.1, the theorem is proved.

On the basis of the inequality (35) it is possible to
receive an assessment of the amplitude of the great-
est possible fluctuations of an elastic plate at any time
point:

|w(y, t)| ≤
√

y∗ − y0
λ1D −N(t)

J(0).

3.2 Stability Investigation for the Single-stage
Model of an Viscoelastic Body

Definition 3.2. The solution of the problem (1)–
(6), (8), (13)-(14) for four unknown functions
w(y, t) ∈ C4,2 {[y0, y∗]×R+}, v1(x, y, t),
v2(x, y, t), P (x, y, t) ∈ C2,2 {S1

∪
S2 ×R+} is

called stable with respect to perturbations of the initial
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data (15), (16), if for any arbitrarily small positive
number δ > 0 there exists a number ε = ε(δ) > 0,
such that for any functions f1(y), f2(y) ∈ C4[y0, y∗]
and f5(x, y), f6(x, y) ∈ C2{S1

∪
S2}, satisfying

the boundary conditions and the conditions of the
smallness by the norm ∥f1(y)∥ < ε, ∥f2(y)∥ <
ε,∥f5(x, y)∥ < ε, ∥f6(x, y)∥ < ε, the inequalities
|w(y, t)| < δ, y ∈ [y0, y∗] and |v1(x, y, t)| < δ,
|v2(x, y, t)| < δ, |P (x, y, t)| < δ, (x, y) ∈ S1

∪
S2

will hold for any time t > 0.

Theorem 3.2. Let for all y, t, τ the conditions

β2η1 + β1 ≥ 0, Ṅ(t) > 0, (36)

N(t) < λ1D inf
y
(1 +Q1(y, 0, t)) , (37)

Qi(y,t,t)=0,
∂Qi

∂t
(y,0,t)≤0,

∂Qi

∂τ
(y,τ,t)≥0,

∂2Qi

∂τ∂t
(y, τ, t)≤0, 1+Qi(y, 0, t)>0, (i=1, 2).

(38)

Then the solution w(y, t), v1(x, y, t), v2(x, y, t) of
the problem (1)–(6), (8), (13)-(14) and the derivative
ẇ(y, t) are stable with respect to perturbations of the
initial data v1(x, y, 0), v2(x, y, 0), ẇ(y, 0), w′(y, 0),
w′′(y, 0).

Proof. We note that the inequalities (27), (28), (33) are
valid under the boundary conditions (13) - (14).
Considering the conditions (13) - (14), (38) we will

obtain equalities

2

y∗∫
y0

ẇ

w′′(y, t)−
t∫

0

∂Q1(y, τ, t)

∂τ
w′′(y, τ)dτ

′′

dy =

= 2

y∗∫
y0

ẇ′′

w′′(y, t)−
t∫

0

∂Q1(y, τ, t)

∂τ
w′′(y, τ)dτ

dy =

=

 y∗∫
y0

(
w′′2(y, t) (1 +Q1(y, 0, t)) +

+

t∫
0

∂Q1

∂τ
(y, τ, t) (w′′(y, t)−w′′(y, τ))

2
dτ

dy


t

+

+

y∗∫
y0

∂Q1

∂τ
(y, t, t)w′′2(y, t)dy−

−
y∗∫

y0

 t∫
0

∂2Q1

∂τ∂t
(y, τ, t) (w′′(y, t)−w′′(y, τ))

2
dτ

dy+

+

y∗∫
y0

w′′2(y, t)

(
∂ Q1

∂t
(y, t, t)− ∂ Q1

∂t
(y, 0, t)

)
dy,

2

y∗∫
y0

ẇ

w(y, t)− t∫
0

∂Q2(y, τ, t)

∂τ
w(y, τ)dτ

 dy =

=

 y∗∫
y0

 t∫
0

∂Q2

∂τ
(y, τ, t) (w(y, t)− w(y, τ))

2
dτ+

+w2(y, t) (1 +Q2(y, 0, t))

)
dy

)
t

+ (39)

+

y∗∫
y0

∂Q2

∂τ
(y, t, t)w2(y, t)dy−

−
y∗∫

y0

 t∫
0

∂2Q2

∂τ∂t
(y, τ, t) (w(y, t)−w(y, τ))2 dτ

dy+
+

y∗∫
y0

w2(y, t)

(
∂Q2

∂t
(y, t, t)− ∂Q2

∂t
(y, 0, t)

)
dy.

Multiplying the equation (8) by ẇ(y, t) and integrat-
ing from y0 to y∗, accounting for the equalities (39),
we will obtain

1

2

y∗∫
y0

(
Mẇ2(y, t)+D (1 +Q1(y, 0, t))w

′′2(y, t)+

+D

t∫
0

∂Q1

∂τ
(y, τ, t) (w′′(y, t)− w′′(y, τ))

2
dτ+

+β0 (1 +Q2(y, 0, t))w
2(y, t)−N(t)w′2(y, t)+

+β0

t∫
0

∂Q2

∂τ
(y, τ, t) (w(y, t)−w(y, τ))2 dτ

dy


t

=

= −
y∗∫

y0

(
1

2
Ṅ(t)w′2(y, t)−D

∂Q1

∂τ
(y, t, t)w′′2(y, t)+

+D

∫ t

0

∂2Q1

∂τ∂t
(y, τ, t) (w′′(y, t)− w′′(y, τ))

2
dτ−

−Dw′′2(y, t)

(
∂Q1

∂t
(y, t, t)− ∂Q1

∂t
(y, 0, t)

)
+

+β2ẇ
′′2(y, t)+ β1ẇ

2(y, t)− β0
∂Q2

∂τ
(y, t, t)w2(y, t)+
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+β0

t∫
0

∂2Q2

∂τ∂t
(y, τ, t) (w(y, t)− w(y, τ))

2
dτ−

−β0w2(y, t)

(
∂Q2

∂t
(y, t, t)− ∂Q2

∂t
(y, 0, t)

)
−

− (P1(a, y, t)− P2(a, y, t)) ẇ(y, t)

)
dy. (40)

Now we consider the following functional

Φ(t) =
1

2

∫∫
S

ρV 2(x, y, t)dS+

+
1

2

y∗∫
y0

(
Mẇ2(y, t)+D (1+Q1(y, 0, t))w

′′2(y, t)+

+D

t∫
0

∂Q1

∂τ
(y, τ, t) (w′′(y, t)− w′′(y, τ))

2
dτ+

+β0

t∫
0

∂Q2

∂τ
(y, τ, t) (w(y, t)− w(y, τ))

2
dτ− (41)

−N(t)w′2(y, t) + β0 (1 +Q2(y, 0, t))w
2(y, t)

)
dy.

For the time-derivative ∂Φ
∂t

of this functional, using
expressions (21), (40) and inequality (28), similarly
(29), we obtain

∂Φ

∂t
≤ −

y∗∫
y0

(
(β2η1 + β1)ẇ

2(y, t)+
1

2
Ṅ(t)w′2(y, t)+

+D
∂Q1

∂τ
(y, t, t)w′′2(y, t)+

+D

t∫
0

∂2Q1

∂τ∂t
(y, τ, t) (w′′(y, t)− w′′(y, τ))

2
dτ−

−Dw′′2(y, t)

(
∂Q1

∂t
(y, t, t)− ∂Q1

∂t
(y, 0, t)

)
−

−β0
∂Q2

∂τ
(y, t, t)w2(y, t)+

+β0

t∫
0

∂2Q2

∂τ∂t
(y, τ, t) (w(y, t)− w(y, τ))

2
dτ−

−β0w2(y, t)

(
∂Q2

∂t
(y, t, t)− ∂Q2

∂t
(y, 0, t)

))
dy−

−µ
∫∫
S

(
v21x + v21y + v22x + v22y

)
dS. (42)

Under conditions (36), (38) from (42) it follows, that
∂Φ
∂t

≤ 0. Integrating from 0 to t, we obtain the inequal-
ity

Φ(t) ≤ Φ(0). (43)

We make the evaluations of the functional with the
boundary conditions (13)–(14). Using the inequalities
(30), we obtain the upper bound on Φ(0):

Φ(0) =
1

2

∫∫
S

ρ
(
v210 + v220

)
dS+

+
1

2

y∗∫
y0

(
Mẇ2

0 +

(
D+

|N(0)|
λ1

+
β0
η1

)
w′′

0
2
)
dy.

(44)

Using the first inequality (27) and inequalities (38),
we obtain the lower bound for Φ(t):

Φ(t) ≥ 1

2

∫∫
S

ρV 2dS +
1

2

y∗∫
y0

(
Mẇ2(y, t)+ (45)

+

(
λ1D inf

y
(1+Q1(y, 0, t))−N(t)

)
w′2(y, t)

)
dy.

Using the Cauchy-Bunyakovsky inequality (33) under
condition (37) the inequality (45) takes the form

Φ(t) ≥ 1

2

∫∫
S

ρ
(
v21 + v22

)
dS +

1

2

y∗∫
y0

Mẇ2(y, t)dy+

+
λ1D inf

y
(1 +Q1(y, 0, t))−N(t)

2(y∗ − y0)
w2(y, t). (46)

Thus, taking into account (43), (44), (46), we obtain the
inequality

∫∫
S

ρ
(
v21 + v22

)
dS +

y∗∫
y0

Mẇ2(y, t)dy+

+
λ1D inf

y
(1 +Q1(y, 0, t))−N(t)

2(y∗ − y0)
w2(y, t) ≤

≤
∫∫
S

ρ
(
v210 + v220

)
dS+ (47)
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+

y∗∫
y0

(
Mẇ2

0 +

(
D +

|N(0)|
λ1

+
β0
η1

)
w′′

0
2
)
dy.

From inequalities ∥fi(y)∥ < ε, i = 1, 2,
∥fi(x, y)∥ < ε, i = 5, 6 it follows that |v10| < ε,
|v20| < ε, |ẇ0| < ε, |w′

0| < ε, |w′′
0 | < ε.

And as w(y, t) ∈ C4,2 {[y0, y∗]×R+}, v1(x, y, t),
v2(x, y, t) ∈ C2,2 {S1

∪
S2 ×R+}, then (47) im-

plies, that for any arbitrarily small positive number
δ > 0 there exists a number ε = ε(δ) > 0, such
that the inequalities |w(y, t)| < δ, |ẇ(y, t)| < δ,
y ∈ [y0, y∗] and |v1(x, y, t)| < δ, |v2(x, y, t)| < δ,
(x, y) ∈ S1

∪
S2 will hold for any time t > 0. Hence,

according to Definition 3.2, the theorem is proved.

Remark. For example, the kernels of the form
Qi(x, s, t) = ai (e

s−t − 1) satisfy the conditions (38),
where 0 < ai ≤ 1 are some positive parameters.

4 Conclusion
In this work to study the dynamics of a deformable

body proposed two models. We constructed the two
relevant functionals of Lyapunov to investgate the dy-
namic stability of an elastic plate contacting a fluctu-
ating viscous incompressible fluid. Accounting for the
aging of the plate material in the second model led to
more stringent constraints on the parameters of the sys-
tem (on the flexural stiffness of the plate D and on the
compressing forces N ).

Acknowledgements
The work was supported by the Russian foundation

for basic research, grants 15-01-08599 and 15-41-
02455.

References
Ageev, R.V., Kuznetsova, E.L., Kulikov, N.I., Mogile-

vich, L.I., and Popov, V.S. (2014). Mathematical
model of movement of a pulsing layer of viscous liq-
uid in the channel with an elastic wall. PNRPU Me-
chanics Bulletin (Perm National Research Polytech-
nic University), 2014(3), pp. 17–35 (In Russian).

Ankilov, A.V. and Velmisov, P.A. (2013). Mathemati-
cal modeling in problems of dynamic stability of de-
formable elements of constructions at aerohydrody-
namic influence. Ulyanovsk State Technical Univer-
sity. Ulyanovsk (In Russian).

Ankilov, A.V. and Velmisov, P.A. (2015). Lyapunov
functionals in some problems of dynamic stability of
aeroelastic constructions. Ulyanovsk State Technical
University. Ulyanovsk (In Russian).

Ankilov, A.V. and Velmisov, P.A. (2016). Stability of
solutions to an aerohydroelasticity problem. Journal
of Mathematical Sciences (United States), 219(1),
pp. 14–26.

Ankilov, A.V. and Velmisov, P.A. (2016). Stability of
solutions of initial-boundary value problem of aero-
hydroelasticity. Modern mathematics. Fundamental
directions. 59, pp. 35–52 (In Russian).

Kheiri, M. and Paidoussis, M.P. (2015). Dynamics and
stability of a flexible pinned-free cylinder in axial
flow. Journal of Fluids and Structures, 55, pp. 204–
217.

Kollatz, L. (1968). Problems on eigenvalues. Science.
Moscow (In Russian).

Kontzialis, K., Moditis, K., and Paidoussis, M.P.
(2017). Transient simulations of the fluid-structure
interaction response of a partially confined pipe under
axial flows in opposite directions. Journal of Pres-
sure Vessel Technology, Transactions of the ASME,
139(3).

Moditis, K., Paidoussis, M., and Ratigan, J. (2016). Dy-
namics of a partially confined, discharging, cantilever
pipe with reverse external flow. Journal of Fluids and
Structures, 63, pp. 120–139.

Mogilevich, L.I., Popov, V.S., Popova, A.A., and
Christoforova, A.V. (2016). Mathematical modeling
of hydroelastic walls oscillations of the channel on
Winkler foundation under vibrations. Vibroengineer-
ing Procedia, 8, pp. 294–299.

Mogilevich, L.I., Popov, V.S., Rabinsky, L.N., and
Kuznetsova, E.L. (2016). Mathematical model of the
plate on elastic foundation interacting with pulsating
viscous liquid layer. Applied Mathematical Sciences,
10, pp. 1101–1109.

Naumova, N., Ivanov, D., Voloshinova, T., and Er-
shov, B. (2015). Mathematical modelling of cylindri-
cal shell vibrations under internal pressure of fluid
flow. International Conference on Mechanics - Sev-
enth Polyakhov’s Reading: Saint Petersburg State
University.

Sokolov, V.G. and Razov, I.O. (2014). Parametrical vi-
brations and dynamic stability of long-distance gas
pipelines at above-ground laying. Bulletin of Civil
Engineers, 2(43), pp. 65–68 (In Russian).

Velmisov, P.A., Ankilov, A.V., and Semenova, E.P.
(2016). Dynamic stability of deformable elements
of one class of aeroelastic constructions. Applica-
tions of Mathematics in Engineering and Economics
(AMEE’16), AIP Conference Proceedings, 1789,
edited by V. Pasheva, G. Venkov, N. Popivanov,
pp. 1–12.

Zvyagin, A.V. and Gur’ev, K.P. (2017). A fluid-
saturated porous medium under the action of a mov-
ing concentrated load. Moscow University Mechanics
Bulletin, 72(2), pp. 34–39 (In Russian).


