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Division of Electronics

Center for Physical Sciences and Technology
Lithuania

tamasev@pfi.lt

R. Stoop
Institute of Neuroinformatics

University of Zürich and ETHZ
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Abstract
A technique for desynchronization of a network of

FitzHugh–Nagumo type mean-field coupled spiking
neurons is described. The coupled network is exter-
nally driven from a chaotic oscillator via the coupling
node. Chaotic waveform resets the phase of the mean
field and thus effectively decouples the individual os-
cillators. Hardware experiments have been performed
using an electrical circuit consisting of three noniden-
tical FitzHugh–Nagumo oscillators.
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1 Introduction
Synchronization phenomena are abundant in nature,

science, engineering and social life [Pikovsky, Rosen-
blum and Kurths, 2003]. Dynamical systems in di-
verse areas, such as physics, chemistry, biology, and
electronics exhibit a tendency to operate in synchrony.
In some cases synchronization has rather contradic-
tory impact. For example, synchrony in neuronal
networks is very important for information process-
ing within a brain area. However, too strong syn-
chrony of firing neurons cause essential tremor and
Parkinson′s disease symptoms. A large number of
feedbackandnon-feedbackmethods to avoid synchro-
nization of coupled oscillators in general, and more
specifically in neuronal arrays, have been described
in literature, e.g. [Popovych, Hauptmann and Tass,
2005; Popovych, Hauptmann and Tass, 2006; Tass,
2007; Pyragas, Popovych and Tass, 2007; Kano and
Kinoshita, 2009].

In this paper, we describe the desynchronizing a net-
work of FitzHugh–Nagumo (FHN) coupled oscillators
by means of a simplenon-feedbacktechnique. The
method is an alternative to the very recently suggested
remote virtual groundingfeedbacktechnique [Petrovas,
Tamaševičius and Stoop, 2011].

2 Array of the FitzHugh–Nagumo oscillators
Block diagram of an array of coupled FHN oscillators

and circuit diagram of an individual oscillator is shown
in Fig. 1 and Fig. 2, respectively.

Figure 1. Block diagram of three mean–field coupled FHN oscilla-

tors with external chaos oscillator.

Figure 2. Circuit diagram of the FHN oscillator.



Figure 3. 5 ms length train of spikes from the FHN oscillator.

A single FHN oscillator has been described in detail
elsewhere [Tamaševičiutėet al., 2009; Tamaševičiuset
al., 2009]. Here, in Fig. 3 we present a typical train of
spikes from the output of the circuit in Fig. 2, specif-
ically from the node marked ”to R*”. The following
circuit element values have been used in experiment:
R1 = R2 = 1 kΩ, R3 = 560 Ω, R4 = 30 Ω,
R5 = 470 Ω, R6 = 220 Ω, R7 = 47 kΩ, L = 100
mH, C = 22 nF,V0 = −15 V.

3 Chaotic oscillator
Chaotic oscillator [Tamaševičiutė, Mykolaitis and

Tamaševičius, 2011] is depicted in Fig. 4 and is char-
acterized by typical nonperiodic waveform and corre-
sponding broadband continuos spectrum.

Figure 4. Chaotic oscillator. Top: circuit diagram. Middle: 10 ms

lenght snapshot of chaotic waveform. Bottom: power spectrum in

the range from 250 Hz to 5 kHz, vertical scale 10 dB/div., horizontal

scale 0.5 kHz/div., resolution 100 Hz.

The following elements have been used to build the
chaotic oscillator:R1 = R2 = 20 kΩ, R3 = R8 =
62 Ω, R4 = 68 kΩ, R5 = 100 Ω, R6 = 470 Ω, R7 =
1.5 kΩ, L1 = L2 = 20 mH,L3 = 16 mH,C1 = 47 nF,
C2 = 56 nF, C3 = 175 nF. The OA1, OA2 and OA3
are OP07 type operational amplifiers, the D1 and D2
are 1N4148 general–purpose diodes.

4 Non-synchronized FHN Oscillators
At large values of the coupling resistorR∗ the all three

oscillators, FHN1, FHN2, and FHN3 behave like iso-
lated ones. They oscillate at their individual frequen-
cies. We have intentionally set different inductance val-
ues in the individual oscillators, specificallyL1 ≈ 90
mH, L2 ≈ 100 mH, andL3 ≈ 110 mH in FHN1,
FHN2, and FHN3, respectively. Non-synchronized os-
cillators are illustrated with Lisasajous figure, spectrum
and time series in Fig. 5 forR∗ = 220 kΩ.

Figure 5. Non-synchronized FHN oscillators. Top: Lissajous fig-

ure (FHN1 versus FHN2). Middle: Spectrum of the voltage at the

coupling node in the range from 1.2 to 1.8 kHz, vertical scale10

dB/div., horizontal scale 100 Hz/div., resolution 3 Hz. Bottom: 5 ms

length snapshot of the voltage at the coupling node.



5 Synhronized FHN Oscillators
With the decrease of the resistorsR∗, that is with the

increase of the coupling strength (the coupling coef-
ficients can be estimated aski =

√

Li/C/R∗, i =
1, 2, 3) the interaction between the individual oscilla-
tors becomes stronger. Eventually they appear phase
locked. The results in Fig. 6 are presented forR∗ = 5.6
kΩ. Though the oscillators have somewhat different
phases as evident from the Lisasajous figure in Fig. 6,
they do oscillate at the same single frequency. In the
previous section the array of oscillators exhibited three
different incommensurate frequencies, namely≈ 1.42
kHz, ≈ 1.53 kHz, and≈ 1.65 kHz (Fig. 5). Here we
see a single line (higher harmonics are not shown) at
≈ 1.60 kHz (Fig. 6). The waveform in Fig. 6 taken at
the coupling node is very similar to the train of periodic
spikes from a single uncoupled oscillator (Fig. 3). The
only difference is that the width of the spikes is slightly
larger due to the phase shift between the synchronized
oscillators.

Figure 6. Synchronized FHN oscillators. Top: Lissajous figure

(FHN1 versus FHN2). Middle: Spectrum of the voltage at the cou-

pling node in the range from 1.2 to 1.8 kHz, vertical scale 10 dB/div.,

horizontal scale 100 Hz/div., resolution 3 Hz. Bottom: 5 ms length

snapshot of the voltage at the coupling node.

6 Desynchronized FHN Oscillators
In this section we describe the influence of chaos on

the synchronized FHN oscillators. Broadband signal
from the chaos oscillator, characterized in section 3, is
applied via the resistorR ≈ R∗ to the coupling node.
Frequency range of the chaotic signal (0 to 4 kHz) cov-
ers the first (1.6 kHz) and the second (3.2 kHz) harmon-
ics of the mean field of the FHN oscillators. Therefore,
chaos effectively disturbs the mean voltage< V > of
the array and via the coupling resistorsR∗ effects the
individual FHN oscillators. The control force is given
by ki(< V > −Vi), whereVi is the output voltage
of an individual FHN oscillator. For sufficiently high
level of chaos, e.g.Vch ≈ 2 − 3 V, phase locking be-
tween the FHN oscillators is corrupted, as illustrated
with Lissajous figure in Fig. 7. The continuos spectrum
in Fig. 7 is localized near the individual frequencies
of the FHN oscillators and occupies relatively narrow
band. The waveform in Fig. 7 visually is similar to the
waveform of non-synchronized oscillators (Fig. 5).

Figure 7. Desynchronized FHN oscillators. Top: Lissajous figure

(FHN1 versus FHN2). Middle: Spectrum of the voltage at the cou-

pling node in the range from 1.2 to 1.8 kHz, vertical scale 10 dB/div.,

horizontal scale 100 Hz/div., resolution 3 Hz. Bottom: 5 ms length

snapshot of the voltage at the coupling node.



7 Desynchronization Using Noise
Intuitively one can argue that random noise is a good

or even better alternative to chaos for desynchroniza-
tion of coupled oscillators. Indeed, we have replaced
the external chaotic oscillator with commercially avail-
able pseudorandom noise oscillator based on linear
feedback shift registers. The employed noise oscilla-
tor is characterized by extremely flat spectral density
of the output signal. The spectral uneveness is only 1
dB, i.e. much better than 3 dB for the chaotic oscillator
(Fig. 3). Moreover, the upper limit of the spectral range
of noise signal is 20 kHz (at−3 dB). Thus, noise signal
covers all the 12 harmonics of the FHN oscillators (20
kHz/1.6 kHz≈ 12). By increasing the noise level we
observed the same desynchronization phenomenon like
using chaotic signals. The results for noise influence
are not presented here, since all characteristics look the
same as in Fig. 7. On the other hand chaotic oscillators
are essentialy simpler and cheaper than classical noise
oscillators, especially at lower frequencies.

8 Concluding Remarks
We have built and investigated an experimental array

of the FitzHugh–Nagumo type oscillators. The indi-
vidual oscillators differ from the common FitzHugh–
Nagumo electronic cells, e.g. [Binczaket al., 2003;
Aliaga et al., 2003; Jacquiret al., 2004; Jacquiret
al., 2006]. They contain asymmetric activation units as
proposed in [Tamaševičiutėet al., 2009; Tamaševičius
et al., 2009]. We have demonstrated that the cou-
pled oscillators can be desynchronized by applying
chaotic signals to the coupling node. Chaos disturbs the
mean field and consequently currupts the phase lock-
ing between the oscillators. Investigations have been
performed with relatively simple model, namely the
FitzHugh–Nagumo type oscillators. We believe, how-
ever, that similar technique can be applied to networks
composed of more sophisticated, e.g. the Hodgkin-
Huxley neuron cells [Sitt and Aliaga, 2007].

Acknowledgement
One of us (A. P.) was supported under the postdoctoral

fellowship being funded by European Union Struc-
tural Funds project Postdoctoral Fellowship Implemen-
tation in Lithuania within the framework of the Mea-
sure for Enhancing Mobility of Scholars and Other Re-
searchers and the Promotion of Student Research VP1-
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