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Abstract
The optimal control problem for discrete-time

stochastic systems with probabilistic performance in-
dex is considered. New results of qualitative research
based on the dynamic programming are presented.
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1 Introduction
The problem in question of this paper is stochas-

tic optimal control of discrete-time system w.r.t. the
probabilistic performance index. Such models arise in
the aerospace [Malyshev, 1987], economics [Kibzun,
1996] and robotics [Lagoa, 2013]. The existing numer-
ical methods for solving such problems are ineffective
because of the known curse of dimension.
The probabilistic performance index is defined as

probability that a certain precision functional does not
exceed a certain admissible level. Here the precision
functional itself characterizes the accuracy of the con-
trol system but depends on the trajectory of the stochas-
tic system. One example of such a precision functional
is the terminal miss of a guidance system.
In this paper we present new results concerning of

properties of the Bellman function on the basis of util-
isation of the boundedness of the probability.
Using the dynamic programming and the properties

of the Bellman function we find two-sided bounds on
the Bellman function under general assumptions about
the control system, the domain of feasible controls, the
precision functional and the random noise distribution.
It is proved that under certain conditions the solution of
the original control problem coincides with one of the
stochastic programming problem of a certain structure.
As an example, the optimal control problem of a port-

folio of securities with one risk-free and a given num-

ber of risk assets is considered. we find a class of
asymptotic optimal control and prove the asymptotic
optimality of the risk strategy in the case of one risk
asset [Bunto, 2003], [Grigor’ev, 2004].

2 Problem statement
Consider the discrete-time stochastic system

xk+1 = fk (xk, uk, ξk) , k = 0, N, (1)

xk ∈ Rn – the state vector, x0 = X – random variable
(in general case), uk ∈ Rm – the control vector, ξk ∈
Rs – random variable, fk : Rn × Rm × Rs → Rn –
continuous for all k = 0, N function, N ∈ N – the
control horizon.
Let ξk = (ξ0, ..., ξk)

T. Suppose that ξN not depend
on X and ξk+1 not depend on ξk. We denote Uk as the
set of Borel functions uk = uk (x) which values satisfy
the constraints uk (x) ∈ Uk.
Consider the probability performance index

Pϕ (u (·)) = P (Φ (xN+1 (u (·) , ζ)) ≤ ϕ) ,

where P - the probability, Φ : Rn → R – bounded
from below continuous function, ϕ ∈ R – the scalar,
u (·) =

(
uT0 (·) , ..., uTN (·)

)T
- the control, ζ =(

XT , ξT0 , ..., ξ
T
N

)T
.

The problem of optimal control of discrete-time
stochastic system w.r.t probability performance index
has the form

Pϕ (u (·))→ max
u(·)∈U

, (2)

where U = U0 × ...× UN .



It is established [Malyshev, 1987] that if there exists
a strategy uϕ (·) ∈ U that satisfy the following recur-
rence relations of dynamic programming, then it is op-
timal in the problem (2):

uϕk (xk) =

= arg max
uk∈Uk

M
[
Bϕk+1 (fk (xk, uk, ξk))

∣∣xk] ,
Bϕk (x) =

= max
uk∈Uk

M
[
Bϕk+1 (fk (xk, uk, ξk))

∣∣xk = x
]
,

with the boundary condition

BϕN+1 (x) = I(−∞,ϕ] (Φ (x)) , (3)

where M – the expected value, IA (x) – the indicator
function of set A, Bϕk (x) – the Bellman function in
problem (2)

Bϕk (x) =

= sup
uk(·)∈Uk,...,uN (·)∈UN

P
(

Φ (xN+1) ≤ ϕ
∣∣∣xk = x

)
.

In [Azanov, 2017] using the surfaces of level 1 and 0
of the Bellman function, called Isabella 1 and 0, man-
aged to obtain a properties of Bellman equation and
Bellman function. Based on this properties in [Azanov,
2017] was obtained a solutions of complex problems in
aerospace focus. The following section describes the
main statements of the [Azanov, 2017] that used further
to solve the problem of optimal control of a portfolio of
securities.

3 The definition of Isabella and modification of the
Bellman equation

The main idea in [Azanov, 2017] is to consider the
Bellman equation in different regions of the state space,
namely, where the Bellman function is equal to one (Is-
abella of level 1) and zero (Isabella of level 0). Con-
sider the sets

Iϕk = {x ∈ Rn : Bϕk (x) = 1} ,
Oϕk = {x ∈ Rn : Bϕk (x) = 0} .

Consider also the set where the Bellman function is not
equal neither 1, nor 0

Bϕk = Rn \ {Iϕk ∪ O
ϕ
k } .

From the definition of the sets Iϕk , Bϕk , Oϕk it follows
that

Iϕk ∪B
ϕ
k ∪O

ϕ
k = Rn,


Bϕk (x) = 1, x ∈ Iϕk ,
Bϕk (x) ∈ (0, 1) , x ∈ Bϕk ,
Bϕk (x) = 0, x ∈ Oϕk .

In [Azanov, 2017] proved the following Lemma that
Isabella satisfy the recurrent relations that does not de-
pend on the Bellman function.

Lemma 1. The following are true:
1. The set Iϕk satisfy the recurrent relations in reverse

time k = 0, N

Iϕk =
{
x ∈ Rn : ∃uk ∈ Uk :

P
(
fk (x, uk, ξk) ∈ Iϕk+1

)
= 1
}

with the boundary condition

IϕN+1 = {x ∈ Rn : Φ (x) ≤ ϕ} ;

2. The setOϕk satisfy the recurrent relations in reverse
time k = 0, N

Oϕk =
{
x ∈ Rn : ∀uk ∈ Uk :

P
(
fk (x, uk, ξk) ∈ Oϕk+1

)
= 1
}
,

with the boundary condition

OϕN+1 = {x ∈ Rn : Φ (x) > ϕ} ;

3. The Bellman equation in the range Bϕk has the form

Bϕk (x) = max
uk∈Uk

{
P
(
fk (x, uk, ξk) ∈ Iϕk+1

)
+

+ P
(
fk (x, uk, ξk) ∈ Bϕk+1

)
×

×M
[
Bϕk+1 (fk (x, uk, ξk))

∣∣∣fk (x, uk, ξk) ∈ Bϕk+1

]}

From Lemma 1 implies the following important re-
sult, proved in [Azanov, 2017]. We give it below in a
formulation that convenient for this article.

Corollary 1. The following are true:
1. For xk ∈ Iϕk the optimal control at step k is an any

element from the set UIk (xk)

UIk (xk) =

=
{
u ∈ Uk : P

(
fk (xk, u, ξk) ∈ Iϕk+1

)
= 1
}
.

2. For xk ∈ Oϕk the optimal control at step k is an
any element from the set Uk.
3. ∀x ∈ Bϕk , uk (x) ∈ Uk we have a system of in-

equalities

P
(
fk (x, uk, ξk) ∈ Iϕk+1

)
≤

≤M
[
Bϕk+1 (fk (x, uk, ξk))

]
≤

≤ 1−P
(
fk (x, uk, ξk) ∈ Oϕk+1

)
. (4)



4. For k = N Bellman function satisfy the equality

BϕN (x) = max
uN∈UN

P
(
fN (x, uN , ξN ) ∈ IϕN+1

)
.

Using Lemma 1 and Corollary 1 allows, first, to find
Isabella, secondly, to find the optimal controls for x ∈
Iϕk without affecting the Bellman equations and related
problems of stochastic programming of complex struc-
ture. In this case, from claim 2 we conclude that the
definition Isabella level 0 automatically closes the is-
sue of optimal control in x ∈ Oϕk . Thus, the relevant
issue is the determination of the optimal controls for
x ∈ Bϕk .
Using the inequality in item 3 from Corollary 2, we

can get the overall result of the qualitative character,
namely, two-way evaluation of the Bellman function in
Bϕk . This result is presented in the next section.

4 Bilateral evaluation of the Bellman function
Using inequality (4), we formulate the statement

about bilateral evaluation of the Bellman function in
Bϕk .

Theorem 1. For x ∈ Bϕk the Bellman function satisfies
the inequalities

Bϕk (x) ≤ Bϕk (x) ≤ B
ϕ

k (x) , (5)

where

Bϕk (x) = sup
uk∈Uk

P
(
fk (x, uk, ξk) ∈ Iϕk+1

)
,

B
ϕ

k (x) = sup
uk∈Uk

{
1−P

(
fk (x, uk, ξk) ∈ Oϕk+1

)}
,

The proof of the theorem 1 is obtained by calculating
supremum in the left and right parts of the inequalities
(4).
Thus, the Bellman function in Bϕk is bounded from be-

low by the maximum probability that the trajectory of
the control system belongs to Isabella of level 1 in the
next step and bounded from top of the maximum prob-
ability of missing the trajectory of the control system
on Isabella of level 0 in the next step.
From theorem 1 it is possible to obtain two-sided esti-

mate for the optimal value of probabilistic performance
index. Let X ∈ Rn is a deterministic vector. Then the
optimal value of probabilistic performance index [Kan,
2001] has the form

F (ϕ,N,X) = Bϕ0 (X) = Pϕ (uϕ (·)) .

We introduce

F (ϕ,N, x) = Bϕ0 (x) , F (ϕ,N, x) = B
ϕ

0 (x) .

Corollary 2. Let X ∈ Rn is a deterministic vector.
Then for any ϕ ∈ R, N ∈ N and X ∈ Bϕ0 the fol-
lowing inequality holds

F (ϕ,N,X) ≤ F (ϕ,N,X) ≤ F (ϕ,N,X) .

Corollary 2 is the key in the study of the asymptotic
properties of strategies in the problem of optimal port-
folio control of securities. We show this by example.
Let u∞ (·) ∈ U – is some strategy and

F∞ (ϕ,N,X) = Pϕ (u∞ (·)) .

Suppose that for any ϕ ∈ R, N ∈ N, X ∈ Bϕ0 we have

F (ϕ,N,X) ≤ F∞ (ϕ,N,X) . (6)

If

lim
N→∞

F (ϕ,N,X) = lim
N→∞

F (ϕ,N,X) , (7)

then the strategy u∞ (·) ∈ U is as asymptotic optimal,
because of the equality

lim
N→∞

F∞ (ϕ,N,X) = lim
N→∞

F (ϕ,N,X) .

At made assumptions the last revenue is performed in
view of the fact that for any ϕ ∈ R, N ∈ N, X ∈ Bϕ0
fair system of inequalities

F (ϕ,N,X) ≤ F∞ (ϕ,N,X) ≤
≤ F (ϕ,N,X) ≤ F (ϕ,N,X) .

Using the results of sections 3 and 4, let us consider
the problem of optimal control of a portfolio of securi-
ties.

5 Portfolio selection
Consider the scalar control system

xk+1 = xk

(
1 + u1kb+

m∑
i=2

uikξ
i
k

)
,

x0 = X,

(8)

where n = 1 is the dimension of the state vector xk,
m > 1 - dimension of control vector uk, m − 1 - di-
mension of random vector ξk, X > 0, b > −1 - de-
terministic scalars. It is assumed the independence of
the vectors ξk+1 from ξk (see section 2). Let the carrier
distribution of a random vector ξk has the form

Ξ =
{
ζ ∈ Rm−1 : bi ≤ ζi ≤ bi, i = 2,m

}
,



where b
i
> b > bi ≥ −1, for all i and k. That in-

equalities have an important economic meaning. The
inequality b

i
> b means that the maximum yield of

risk asset larger than yield of non risk assets (otherwise
the optimal strategy will be investing in non risk asset).
The inequality b > bi means that minimum yield of
risky assets smaller than yield of non risk asset (oth-
erwise the optimal value of component u1k of control
vector will be equal to zero). The case bi = −1 (for
some i) means that if we will invest all capital into this
asset there are some non zero probability of complete
ruin.
Set Uk has the following form{
u ∈ Rm :

m∑
i=1

ui = 1, ui ≥ 0, i = 1,m

}
,

which means that we invest all of our capital and we
cant do the “short sale” operation.
We consider the problem

P (−xN+1 ≤ ϕ)→ max
u(·)∈U

. (9)

In economics interpretation we have that X is the size
of the initial capital, xk - the amount of capital at the
beginning of the k-th year, u1k - the fraction of capital
xk that invested in risk-free instrument (e.g., in reliable
Bank), with a yield of b, uik - the share of capital xk that
invested in risky assets, characterized by yields ξik i =
2,m. The problem (9) is to maximize the probability
of achieving by the value of capital level −ϕ at a given
point in time N + 1 by investing in certain assets.
Note that in earlier works (see for example [Kibzun,

1996]), which dealt with the case of only one risky as-
set, much attention was paid to the asymptotic proper-
ties of strategies, which is suboptimal in problem (9).
The interest in these properties manifests because of the
so-called ‘exchange paradox” arising because of the us-
ing the strategy that is optimal with respect to criterion
of “average return” [Kibzun, 2001], i.e. M [xN+1].
This paradox is given below: when N → ∞, the sys-
tem synthesized control, optimal by the criterion of ‘av-
erage return”, behaves in such a way that the average
value of capital tends to infinity, and the probability
of ruin to one. Due to the fact that to this day has
not found the optimal probabilistic strategy (even for
a particular case) in the ‘multi-stage” task, the test of
its asymptotic properties is difficult. In this section, us-
ing theorem 1, there is a class of asymptotic optimal
strategy in problem (9), we study its new properties,
are characteristic findings.
In introduced in this article, the designations have

fk (xk, uk, ξk) = xk

(
1 + u1kb+

m∑
i=2

uikξ
i
k

)
,

Φ (x) = −x, ϕ < 0.

Using Lemma 1 we find the sets Iϕk , Bϕk , Oϕk .

Statement 1. Sets Iϕk , Bϕk , Oϕk are determined by the
expressions

Iϕk =
[
ϕIk ,∞

)
,

Bϕk =
(
ϕOk , ϕ

I
k

)
,

Oϕk =
(
−∞, ϕOk

]
,

where ϕIk , ϕOk determine

ϕIk = −ϕ (1 + b)
k−N−1

,

ϕOk = −ϕ
(

1 + max
j=2,m

b
j
)k−N−1

,

With respect to paragraph 1 of corollary 1, any set of
vectors uk (x) of one-parameter families of sets

UIk (x) =

{
u ∈ U :

P

(
x

(
1 + u1b+

m∑
i=2

uiξik

)
≥ ϕIk+1

)
= 1

}
,

is the optimal control at step k for x ≥ ϕIk . Such con-
trol, for example, is uk (x) = (1, 0, ..., 0)

T. In accor-
dance with paragraph 2 of the corollary, any set of vec-
tors uk (x) ∈ U is the optimal control at step k for
x ≤ ϕOk .
Finally, we obtain that for x /∈ Bϕk the optimal control

has the form

uϕk (x) =

{
any element UIk (x) , x ∈

[
ϕIk ,+∞

)
,

any element U, x ∈
(
−∞, ϕOk

]
.

Now let x ∈ Bϕk . Using theorem 1 and statement 1,
we conclude that the the lower and upper bounds of
Bellman function satisfy the equalities

Bϕk (x) =

= max
uk∈U

P

(
x

(
1 + u1kb+

m∑
i=2

uikξ
i
k

)
≥ ϕIk+1

)
,

B
ϕ

k (x) =

= max
uk∈U

P

(
x

(
1 + u1kb+

m∑
i=2

uikξ
i
k

)
≥ ϕOk+1

)
.

Let start investigating the lower and the upper bounds
of the Bellman function. Note, that by virtue of point
4 of corollary 1 these functions with a precision up to



ϕIk+1, ϕOk+1, ϕ and distributions ξk, ξN coincides with
the Bellman function at k = N , i.e.

BϕN (x) =

= max
uN∈U

P

(
x

(
1 + u1Nb+

m∑
i=2

uiNξ
i
N

)
≥ −ϕ

)
.

We conclude that the solution of the corresponding
problems of stochastic programming in (10) exists (this
condition is proved in [Kibzun, 1996]).

Let us use the result of section 4 to find a class of
asymptotically optimal strategies. With the approval of
1 and (11), we find the lower F and upper F estimates
for functions of the optimal probability

F (ϕ,N,X) =

= max
u0∈U

P

(
X

(
1 + u10b+

m∑
i=2

ui0ξ
i
0

)
≥

≥ −ϕ (1 + b)
−N

)
,

F (ϕ,N,X) =

= max
u0∈U

P

(
X

(
1 + u10b+

m∑
i=2

ui0ξ
i
0

)
≥

≥ −ϕ
(

1 + max
j=2,m

b
j
)−N )

.

Based on the properties of continuous probability func-
tions [Kibzun, 1996], we obtain the equality (7), i.e.

lim
N→∞

F (ϕ,N,X) = lim
N→∞

F (ϕ,N,X) .

Thus, to build a class asymptotic optimal strategies, us-
ing corollary 2, it is enough to specify such strategies
that satisfied inequality (6). Les us show that this prop-
erty has a one-parameter class of strategy uβ (·), whose
definition is given below

uβk (x) =

= arg max
uk∈U

P

(
x

(
1 + u1kb+

m∑
i=2

uikξ
i
k

)
≥

≥ −ϕ (1 + β)
k−N

)
, (10)

where β is a numeric parameter, chosen from the inter-

val
[
b, max

j=2,m
b
j
]

. We denote

Bβk (x) =

= max
uk∈U

P

(
x

(
1 + u1kb+

m∑
i=2

uikξ
i
k

)
≥

≥ −ϕ (1 + β)
k−N

)
. (11)

The meaning of the function Bβk (x) is: when β = b

it coincides with the lower, and at β = max
j=2,m

b
j

with

the upper border of the Bellman function. Otherwise,
she, as the Bellman function, satisfies the following in-
equality (by the properties of probability)

Bϕk (x) ≤ Bβk (x) ≤ B
ϕ

k (x) .

Consider the function

F β (ϕ,N,X) = Pϕ
(
uβ (·)

)
.

It is easily to show that for all ϕ < 0, X ∈ Bϕ0 , N ∈ N
the next inequalities are true

F (ϕ,N,X) ≤ F β (ϕ,N,X) ≤ F (ϕ,N,X) .

From the last inequalities and (12) we finally have that

lim
N→∞

F β (ϕ,N,X) = lim
N→∞

F (ϕ,N,X) . (12)

The equality (12) is the evidence of the asymptotic op-
timality of the one-parametric class of policies uβ (·)
with parameter β.
Finally, using the results [Kibzun, 1996], were was

found the analytically solution of stochastic program-
ming problem type (10), we can find uβk (x) and Bβk (x)
analytically in the case of one risk asset m = 2.

Statement 2. Let m = 2, bm = b and b
m

= b, then
the control system determines

fk (xk, uk, ξk) = xk
(
1 + u1kb+ u2kξk

)
,

function uβk (x) has the form

{
(1, 0)

T
, x ≥ −ϕ (1 + β)

k−N
(1 + b)

−1
,

(0, 1)
T
, x < −ϕ (1 + β)

k−N
(1 + b)

−1
.



Function Bβk (x) has the form


1, x > ψk (β, b) ,

0, x < ψk (β, a) ,

1− Fξ
(

−ϕ
x(1+β)N−k − 1

)
, else,

where ψk (x, y) = −ϕ (1 + x)
k−N

(1 + y)
−1 and Fξ

is the distribution function of a random variable ξk.

The strategy uβ (·) =
(
uβ0 (·) , ..., uβN (·)

)
from state-

ment 2 in case of β = b called in [Kibzun, 1996] as “the
risk strategy”. It is interesting that in [Kibzun, 1996]
the risk strategy was found using some heuristic con-
siderations based on economic sense. This economic
sense is this: until we reach the level of capital ψk (b, b)
(or ϕIk , which is the same), we will invest in the risky
asset, and after reaching this level we will invest in non
risky asset. Using point 4 of corollary 1 we conclude
that risk strategy is optimal control for k = N .

6 Conclusion
The new properties of the Bellman equation in the

problem of optimal control for discrete-time stochastic
systems with probabilistic performance index are re-
searched. On their basis we found a class of asymptotic
optimal strategies in the problem of optimal investment
subject to risk.
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